1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// CUDA C/C++ includes memory space designation as variable type qualifers (such
// as __global__ and __shared__). Knowing the space of a memory access allows
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
// shared memory can be translated to `ld.shared` which is roughly 10% faster
// than a generic `ld` on an NVIDIA Tesla K40c.
//
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
// compilers must infer the memory space of an address expression from
// type-qualified variables.
//
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
// places only type-qualified variables in specific address spaces, and then
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
// (so-called the generic address space) for other instructions to use.
//
// For example, the Clang translates the following CUDA code
// __shared__ float a[10];
// float v = a[i];
// to
// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
// %v = load float, float* %1 ; emits ld.f32
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
// redirected to %0 (the generic version of @a).
//
// The optimization implemented in this file propagates specific address spaces
// from type-qualified variable declarations to its users. For example, it
// optimizes the above IR to
// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
// codegen is able to emit ld.shared.f32 for %v.
//
// Address space inference works in two steps. First, it uses a data-flow
// analysis to infer as many generic pointers as possible to point to only one
// specific address space. In the above example, it can prove that %1 only
// points to addrspace(3). This algorithm was published in
// CUDA: Compiling and optimizing for a GPU platform
// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
// ICCS 2012
//
// Then, address space inference replaces all refinable generic pointers with
// equivalent specific pointers.
//
// The major challenge of implementing this optimization is handling PHINodes,
// which may create loops in the data flow graph. This brings two complications.
//
// First, the data flow analysis in Step 1 needs to be circular. For example,
// %generic.input = addrspacecast float addrspace(3)* %input to float*
// loop:
// %y = phi [ %generic.input, %y2 ]
// %y2 = getelementptr %y, 1
// %v = load %y2
// br ..., label %loop, ...
// proving %y specific requires proving both %generic.input and %y2 specific,
// but proving %y2 specific circles back to %y. To address this complication,
// the data flow analysis operates on a lattice:
// uninitialized > specific address spaces > generic.
// All address expressions (our implementation only considers phi, bitcast,
// addrspacecast, and getelementptr) start with the uninitialized address space.
// The monotone transfer function moves the address space of a pointer down a
// lattice path from uninitialized to specific and then to generic. A join
// operation of two different specific address spaces pushes the expression down
// to the generic address space. The analysis completes once it reaches a fixed
// point.
//
// Second, IR rewriting in Step 2 also needs to be circular. For example,
// converting %y to addrspace(3) requires the compiler to know the converted
// %y2, but converting %y2 needs the converted %y. To address this complication,
// we break these cycles using "undef" placeholders. When converting an
// instruction `I` to a new address space, if its operand `Op` is not converted
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
// For instance, our algorithm first converts %y to
// %y' = phi float addrspace(3)* [ %input, undef ]
// Then, it converts %y2 to
// %y2' = getelementptr %y', 1
// Finally, it fixes the undef in %y' so that
// %y' = phi float addrspace(3)* [ %input, %y2' ]
//
// TODO: This pass is experimental and not enabled by default. Users can turn it
// on by setting the -nvptx-use-infer-addrspace flag of llc. We plan to replace
// NVPTXNonFavorGenericAddrSpaces with this pass shortly.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "nvptx-infer-addrspace"
#include "NVPTX.h"
#include "MCTargetDesc/NVPTXBaseInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
using namespace llvm;
namespace {
const unsigned ADDRESS_SPACE_UNINITIALIZED = (unsigned)-1;
using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
/// \brief NVPTXInferAddressSpaces
class NVPTXInferAddressSpaces: public FunctionPass {
public:
static char ID;
NVPTXInferAddressSpaces() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
private:
// Returns the new address space of V if updated; otherwise, returns None.
Optional<unsigned>
updateAddressSpace(const Value &V,
const ValueToAddrSpaceMapTy &InferredAddrSpace);
// Tries to infer the specific address space of each address expression in
// Postorder.
void inferAddressSpaces(const std::vector<Value *> &Postorder,
ValueToAddrSpaceMapTy *InferredAddrSpace);
// Changes the generic address expressions in function F to point to specific
// address spaces if InferredAddrSpace says so. Postorder is the postorder of
// all generic address expressions in the use-def graph of function F.
bool
rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
const ValueToAddrSpaceMapTy &InferredAddrSpace,
Function *F);
};
} // end anonymous namespace
char NVPTXInferAddressSpaces::ID = 0;
namespace llvm {
void initializeNVPTXInferAddressSpacesPass(PassRegistry &);
}
INITIALIZE_PASS(NVPTXInferAddressSpaces, "nvptx-infer-addrspace",
"Infer address spaces",
false, false)
// Returns true if V is an address expression.
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
// getelementptr operators.
static bool isAddressExpression(const Value &V) {
if (!isa<Operator>(V))
return false;
switch (cast<Operator>(V).getOpcode()) {
case Instruction::PHI:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::GetElementPtr:
return true;
default:
return false;
}
}
// Returns the pointer operands of V.
//
// Precondition: V is an address expression.
static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
assert(isAddressExpression(V));
const Operator& Op = cast<Operator>(V);
switch (Op.getOpcode()) {
case Instruction::PHI: {
auto IncomingValues = cast<PHINode>(Op).incoming_values();
return SmallVector<Value *, 2>(IncomingValues.begin(),
IncomingValues.end());
}
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::GetElementPtr:
return {Op.getOperand(0)};
default:
llvm_unreachable("Unexpected instruction type.");
}
}
// If V is an unvisited generic address expression, appends V to PostorderStack
// and marks it as visited.
static void appendsGenericAddressExpressionToPostorderStack(
Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
DenseSet<Value *> *Visited) {
assert(V->getType()->isPointerTy());
if (isAddressExpression(*V) &&
V->getType()->getPointerAddressSpace() ==
AddressSpace::ADDRESS_SPACE_GENERIC) {
if (Visited->insert(V).second)
PostorderStack->push_back(std::make_pair(V, false));
}
}
// Returns all generic address expressions in function F. The elements are
// ordered in postorder.
static std::vector<Value *> collectGenericAddressExpressions(Function &F) {
// This function implements a non-recursive postorder traversal of a partial
// use-def graph of function F.
std::vector<std::pair<Value*, bool>> PostorderStack;
// The set of visited expressions.
DenseSet<Value*> Visited;
// We only explore address expressions that are reachable from loads and
// stores for now because we aim at generating faster loads and stores.
for (Instruction &I : instructions(F)) {
if (isa<LoadInst>(I)) {
appendsGenericAddressExpressionToPostorderStack(
I.getOperand(0), &PostorderStack, &Visited);
} else if (isa<StoreInst>(I)) {
appendsGenericAddressExpressionToPostorderStack(
I.getOperand(1), &PostorderStack, &Visited);
}
}
std::vector<Value *> Postorder; // The resultant postorder.
while (!PostorderStack.empty()) {
// If the operands of the expression on the top are already explored,
// adds that expression to the resultant postorder.
if (PostorderStack.back().second) {
Postorder.push_back(PostorderStack.back().first);
PostorderStack.pop_back();
continue;
}
// Otherwise, adds its operands to the stack and explores them.
PostorderStack.back().second = true;
for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
appendsGenericAddressExpressionToPostorderStack(
PtrOperand, &PostorderStack, &Visited);
}
}
return Postorder;
}
// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
// of OperandUse.get() in the new address space. If the clone is not ready yet,
// returns an undef in the new address space as a placeholder.
static Value *operandWithNewAddressSpaceOrCreateUndef(
const Use &OperandUse, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) {
Value *Operand = OperandUse.get();
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
return NewOperand;
UndefUsesToFix->push_back(&OperandUse);
return UndefValue::get(
Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
}
// Returns a clone of `I` with its operands converted to those specified in
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
// operand whose address space needs to be modified might not exist in
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
// adds that operand use to UndefUsesToFix so that caller can fix them later.
//
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
// from a pointer whose type already matches. Therefore, this function returns a
// Value* instead of an Instruction*.
static Value *cloneInstructionWithNewAddressSpace(
Instruction *I, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) {
Type *NewPtrType =
I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
if (I->getOpcode() == Instruction::AddrSpaceCast) {
Value *Src = I->getOperand(0);
// Because `I` is generic, the source address space must be specific.
// Therefore, the inferred address space must be the source space, according
// to our algorithm.
assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
if (Src->getType() != NewPtrType)
return new BitCastInst(Src, NewPtrType);
return Src;
}
// Computes the converted pointer operands.
SmallVector<Value *, 4> NewPointerOperands;
for (const Use &OperandUse : I->operands()) {
if (!OperandUse.get()->getType()->isPointerTy())
NewPointerOperands.push_back(nullptr);
else
NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
}
switch (I->getOpcode()) {
case Instruction::BitCast:
return new BitCastInst(NewPointerOperands[0], NewPtrType);
case Instruction::PHI: {
assert(I->getType()->isPointerTy());
PHINode *PHI = cast<PHINode>(I);
PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
NewPHI->addIncoming(NewPointerOperands[OperandNo],
PHI->getIncomingBlock(Index));
}
return NewPHI;
}
case Instruction::GetElementPtr: {
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
GEP->getSourceElementType(), NewPointerOperands[0],
SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
NewGEP->setIsInBounds(GEP->isInBounds());
return NewGEP;
}
default:
llvm_unreachable("Unexpected opcode");
}
}
// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
// constant expression `CE` with its operands replaced as specified in
// ValueWithNewAddrSpace.
static Value *cloneConstantExprWithNewAddressSpace(
ConstantExpr *CE, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace) {
Type *TargetType =
CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
if (CE->getOpcode() == Instruction::AddrSpaceCast) {
// Because CE is generic, the source address space must be specific.
// Therefore, the inferred address space must be the source space according
// to our algorithm.
assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
NewAddrSpace);
return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
}
// Computes the operands of the new constant expression.
SmallVector<Constant *, 4> NewOperands;
for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
Constant *Operand = CE->getOperand(Index);
// If the address space of `Operand` needs to be modified, the new operand
// with the new address space should already be in ValueWithNewAddrSpace
// because (1) the constant expressions we consider (i.e. addrspacecast,
// bitcast, and getelementptr) do not incur cycles in the data flow graph
// and (2) this function is called on constant expressions in postorder.
if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
NewOperands.push_back(cast<Constant>(NewOperand));
} else {
// Otherwise, reuses the old operand.
NewOperands.push_back(Operand);
}
}
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Needs to specify the source type while constructing a getelementptr
// constant expression.
return CE->getWithOperands(
NewOperands, TargetType, /*OnlyIfReduced=*/false,
NewOperands[0]->getType()->getPointerElementType());
}
return CE->getWithOperands(NewOperands, TargetType);
}
// Returns a clone of the value `V`, with its operands replaced as specified in
// ValueWithNewAddrSpace. This function is called on every generic address
// expression whose address space needs to be modified, in postorder.
//
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
static Value *
cloneValueWithNewAddressSpace(Value *V, unsigned NewAddrSpace,
const ValueToValueMapTy &ValueWithNewAddrSpace,
SmallVectorImpl<const Use *> *UndefUsesToFix) {
// All values in Postorder are generic address expressions.
assert(isAddressExpression(*V) &&
V->getType()->getPointerAddressSpace() ==
AddressSpace::ADDRESS_SPACE_GENERIC);
if (Instruction *I = dyn_cast<Instruction>(V)) {
Value *NewV = cloneInstructionWithNewAddressSpace(
I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
if (NewI->getParent() == nullptr) {
NewI->insertBefore(I);
NewI->takeName(I);
}
}
return NewV;
}
return cloneConstantExprWithNewAddressSpace(
cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
}
// Defines the join operation on the address space lattice (see the file header
// comments).
static unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) {
if (AS1 == AddressSpace::ADDRESS_SPACE_GENERIC ||
AS2 == AddressSpace::ADDRESS_SPACE_GENERIC)
return AddressSpace::ADDRESS_SPACE_GENERIC;
if (AS1 == ADDRESS_SPACE_UNINITIALIZED)
return AS2;
if (AS2 == ADDRESS_SPACE_UNINITIALIZED)
return AS1;
// The join of two different specific address spaces is generic.
return AS1 == AS2 ? AS1 : (unsigned)AddressSpace::ADDRESS_SPACE_GENERIC;
}
bool NVPTXInferAddressSpaces::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
// Collects all generic address expressions in postorder.
std::vector<Value *> Postorder = collectGenericAddressExpressions(F);
// Runs a data-flow analysis to refine the address spaces of every expression
// in Postorder.
ValueToAddrSpaceMapTy InferredAddrSpace;
inferAddressSpaces(Postorder, &InferredAddrSpace);
// Changes the address spaces of the generic address expressions who are
// inferred to point to a specific address space.
return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
}
void NVPTXInferAddressSpaces::inferAddressSpaces(
const std::vector<Value *> &Postorder,
ValueToAddrSpaceMapTy *InferredAddrSpace) {
SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
// Initially, all expressions are in the uninitialized address space.
for (Value *V : Postorder)
(*InferredAddrSpace)[V] = ADDRESS_SPACE_UNINITIALIZED;
while (!Worklist.empty()) {
Value* V = Worklist.pop_back_val();
// Tries to update the address space of the stack top according to the
// address spaces of its operands.
DEBUG(dbgs() << "Updating the address space of\n"
<< " " << *V << "\n");
Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
if (!NewAS.hasValue())
continue;
// If any updates are made, grabs its users to the worklist because
// their address spaces can also be possibly updated.
DEBUG(dbgs() << " to " << NewAS.getValue() << "\n");
(*InferredAddrSpace)[V] = NewAS.getValue();
for (Value *User : V->users()) {
// Skip if User is already in the worklist.
if (Worklist.count(User))
continue;
auto Pos = InferredAddrSpace->find(User);
// Our algorithm only updates the address spaces of generic address
// expressions, which are those in InferredAddrSpace.
if (Pos == InferredAddrSpace->end())
continue;
// Function updateAddressSpace moves the address space down a lattice
// path. Therefore, nothing to do if User is already inferred as
// generic (the bottom element in the lattice).
if (Pos->second == AddressSpace::ADDRESS_SPACE_GENERIC)
continue;
Worklist.insert(User);
}
}
}
Optional<unsigned> NVPTXInferAddressSpaces::updateAddressSpace(
const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) {
assert(InferredAddrSpace.count(&V));
// The new inferred address space equals the join of the address spaces
// of all its pointer operands.
unsigned NewAS = ADDRESS_SPACE_UNINITIALIZED;
for (Value *PtrOperand : getPointerOperands(V)) {
unsigned OperandAS;
if (InferredAddrSpace.count(PtrOperand))
OperandAS = InferredAddrSpace.lookup(PtrOperand);
else
OperandAS = PtrOperand->getType()->getPointerAddressSpace();
NewAS = joinAddressSpaces(NewAS, OperandAS);
// join(generic, *) = generic. So we can break if NewAS is already generic.
if (NewAS == AddressSpace::ADDRESS_SPACE_GENERIC)
break;
}
unsigned OldAS = InferredAddrSpace.lookup(&V);
assert(OldAS != AddressSpace::ADDRESS_SPACE_GENERIC);
if (OldAS == NewAS)
return None;
return NewAS;
}
bool NVPTXInferAddressSpaces::rewriteWithNewAddressSpaces(
const std::vector<Value *> &Postorder,
const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) {
// For each address expression to be modified, creates a clone of it with its
// pointer operands converted to the new address space. Since the pointer
// operands are converted, the clone is naturally in the new address space by
// construction.
ValueToValueMapTy ValueWithNewAddrSpace;
SmallVector<const Use *, 32> UndefUsesToFix;
for (Value* V : Postorder) {
unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
}
}
if (ValueWithNewAddrSpace.empty())
return false;
// Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
for (const Use* UndefUse : UndefUsesToFix) {
User *V = UndefUse->getUser();
User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
unsigned OperandNo = UndefUse->getOperandNo();
assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
}
// Replaces the uses of the old address expressions with the new ones.
for (Value *V : Postorder) {
Value *NewV = ValueWithNewAddrSpace.lookup(V);
if (NewV == nullptr)
continue;
SmallVector<Use *, 4> Uses;
for (Use &U : V->uses())
Uses.push_back(&U);
DEBUG(dbgs() << "Replacing the uses of " << *V << "\n to\n " << *NewV
<< "\n");
for (Use *U : Uses) {
if (isa<LoadInst>(U->getUser()) ||
(isa<StoreInst>(U->getUser()) && U->getOperandNo() == 1)) {
// If V is used as the pointer operand of a load/store, sets the pointer
// operand to NewV. This replacement does not change the element type,
// so the resultant load/store is still valid.
U->set(NewV);
} else if (isa<Instruction>(U->getUser())) {
// Otherwise, replaces the use with generic(NewV).
// TODO: Some optimization opportunities are missed. For example, in
// %0 = icmp eq float* %p, %q
// if both p and q are inferred to be shared, we can rewrite %0 as
// %0 = icmp eq float addrspace(3)* %new_p, %new_q
// instead of currently
// %generic_p = addrspacecast float addrspace(3)* %new_p to float*
// %generic_q = addrspacecast float addrspace(3)* %new_q to float*
// %0 = icmp eq float* %generic_p, %generic_q
if (Instruction *I = dyn_cast<Instruction>(V)) {
BasicBlock::iterator InsertPos = std::next(I->getIterator());
while (isa<PHINode>(InsertPos))
++InsertPos;
U->set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
} else {
U->set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
V->getType()));
}
}
}
if (V->use_empty())
RecursivelyDeleteTriviallyDeadInstructions(V);
}
return true;
}
FunctionPass *llvm::createNVPTXInferAddressSpacesPass() {
return new NVPTXInferAddressSpaces();
}
|