1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "LeonPasses.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
LEONMachineFunctionPass::LEONMachineFunctionPass(TargetMachine &tm, char &ID)
: MachineFunctionPass(ID) {}
LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID)
: MachineFunctionPass(ID) {}
int LEONMachineFunctionPass::GetRegIndexForOperand(MachineInstr &MI,
int OperandIndex) {
if (MI.getNumOperands() > 0) {
if (OperandIndex == LAST_OPERAND) {
OperandIndex = MI.getNumOperands() - 1;
}
if (MI.getNumOperands() > (unsigned)OperandIndex &&
MI.getOperand(OperandIndex).isReg()) {
return (int)MI.getOperand(OperandIndex).getReg();
}
}
static int NotFoundIndex = -10;
// Return a different number each time to avoid any comparisons between the
// values returned.
NotFoundIndex -= 10;
return NotFoundIndex;
}
// finds a new free FP register
// checks also the AllocatedRegisters vector
int LEONMachineFunctionPass::getUnusedFPRegister(MachineRegisterInfo &MRI) {
for (int RegisterIndex = SP::F0; RegisterIndex <= SP::F31; ++RegisterIndex) {
if (!MRI.isPhysRegUsed(RegisterIndex) &&
!(std::find(UsedRegisters.begin(), UsedRegisters.end(),
RegisterIndex) != UsedRegisters.end())) {
return RegisterIndex;
}
}
return -1;
}
//*****************************************************************************
//**** InsertNOPLoad pass
//*****************************************************************************
// This pass fixes the incorrectly working Load instructions that exists for
// some earlier versions of the LEON processor line. NOP instructions must
// be inserted after the load instruction to ensure that the Load instruction
// behaves as expected for these processors.
//
// This pass inserts a NOP after any LD or LDF instruction.
//
char InsertNOPLoad::ID = 0;
InsertNOPLoad::InsertNOPLoad(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
} else if (MI.isInlineAsm()) {
// Look for an inline ld or ldf instruction.
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("ld")) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixFSMULD pass
//*****************************************************************************
// This pass fixes the incorrectly working FSMULD instruction that exists for
// some earlier versions of the LEON processor line.
//
// The pass should convert the FSMULD operands to double precision in scratch
// registers, then calculate the result with the FMULD instruction. Therefore,
// the pass should replace operations of the form:
// fsmuld %f20,%f21,%f8
// with the sequence:
// fstod %f20,%f0
// fstod %f21,%f2
// fmuld %f0,%f2,%f8
//
char FixFSMULD::ID = 0;
FixFSMULD::FixFSMULD(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {}
bool FixFSMULD::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FSMULD && MI.getNumOperands() == 3) {
// take the registers from fsmuld %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("fsmuld")) {
// this is an inline FSMULD instruction
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
// extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (Reg1Index == UNASSIGNED_INDEX)
Reg1Index = MO.getReg();
else if (Reg2Index == UNASSIGNED_INDEX)
Reg2Index = MO.getReg();
else if (Reg3Index == UNASSIGNED_INDEX)
Reg3Index = MO.getReg();
}
if (Reg3Index != UNASSIGNED_INDEX)
break;
}
}
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX &&
Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX ||
ScratchReg2Index == UNASSIGNED_INDEX) {
errs() << "Cannot allocate free scratch registers for the FixFSMULD "
"pass."
<< "\n";
} else {
// create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
// create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
// create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** ReplaceFMULS pass
//*****************************************************************************
// This pass fixes the incorrectly working FMULS instruction that exists for
// some earlier versions of the LEON processor line.
//
// This pass converts the FMULS operands to double precision in scratch
// registers, then calculates the result with the FMULD instruction.
// The pass should replace operations of the form:
// fmuls %f20,%f21,%f8
// with the sequence:
// fstod %f20,%f0
// fstod %f21,%f2
// fmuld %f0,%f2,%f8
//
char ReplaceFMULS::ID = 0;
ReplaceFMULS::ReplaceFMULS(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool ReplaceFMULS::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FMULS && MI.getNumOperands() == 3) {
// take the registers from fmuls %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("fmuls")) {
// this is an inline FMULS instruction
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
// extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
if (Reg1Index == UNASSIGNED_INDEX)
Reg1Index = MO.getReg();
else if (Reg2Index == UNASSIGNED_INDEX)
Reg2Index = MO.getReg();
else if (Reg3Index == UNASSIGNED_INDEX)
Reg3Index = MO.getReg();
}
if (Reg3Index != UNASSIGNED_INDEX)
break;
}
}
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX &&
Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX ||
ScratchReg2Index == UNASSIGNED_INDEX) {
errs() << "Cannot allocate free scratch registers for the "
"ReplaceFMULS pass."
<< "\n";
} else {
// create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
// create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
// create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixAllFDIVSQRT pass
//*****************************************************************************
// This pass fixes the incorrectly working FDIVx and FSQRTx instructions that
// exist for some earlier versions of the LEON processor line. Five NOP
// instructions need to be inserted after these instructions to ensure the
// correct result is placed in the destination registers before they are used.
//
// This pass implements two fixes:
// 1) fixing the FSQRTS and FSQRTD instructions.
// 2) fixing the FDIVS and FDIVD instructions.
//
// FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in
// the pipeline when this option is enabled, so this pass needs only to deal
// with the changes that still need implementing for the "double" versions
// of these instructions.
//
char FixAllFDIVSQRT::ID = 0;
FixAllFDIVSQRT::FixAllFDIVSQRT(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("fsqrtd")) {
// this is an inline fsqrts instruction
Opcode = SP::FSQRTD;
} else if (AsmString.startswith_lower("fdivd")) {
// this is an inline fsqrts instruction
Opcode = SP::FDIVD;
}
}
// Note: FDIVS and FSQRTS cannot be generated when this erratum fix is
// switched on so we don't need to check for them here. They will
// already have been converted to FSQRTD or FDIVD earlier in the
// pipeline.
if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) {
// Insert 5 NOPs before FSQRTD,FDIVD.
for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++)
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// ... and inserting 28 NOPs after FSQRTD,FDIVD.
for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++)
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
//*****************************************************************************
//**** ReplaceSDIV pass
//*****************************************************************************
// This pass fixes the incorrectly working SDIV instruction that
// exist for some earlier versions of the LEON processor line. The instruction
// is replaced with an SDIVcc instruction instead, which is working.
//
char ReplaceSDIV::ID = 0;
ReplaceSDIV::ReplaceSDIV() : LEONMachineFunctionPass(ID) {}
ReplaceSDIV::ReplaceSDIV(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {}
bool ReplaceSDIV::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::SDIVrr) {
MI.setDesc(TII.get(SP::SDIVCCrr));
Modified = true;
} else if (Opcode == SP::SDIVri) {
MI.setDesc(TII.get(SP::SDIVCCri));
Modified = true;
}
}
}
return Modified;
}
static RegisterPass<ReplaceSDIV> X("replace-sdiv", "Replase SDIV Pass", false,
false);
//*****************************************************************************
//**** FixCALL pass
//*****************************************************************************
// This pass restricts the size of the immediate operand of the CALL
// instruction, which can cause problems on some earlier versions of the LEON
// processor, which can interpret some of the call address bits incorrectly.
//
char FixCALL::ID = 0;
FixCALL::FixCALL(TargetMachine &tm) : LEONMachineFunctionPass(tm, ID) {}
bool FixCALL::runOnMachineFunction(MachineFunction &MF) {
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
MI.print(errs());
errs() << "\n";
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL || Opcode == SP::CALLrr) {
unsigned NumOperands = MI.getNumOperands();
for (unsigned OperandIndex = 0; OperandIndex < NumOperands;
OperandIndex++) {
MachineOperand &MO = MI.getOperand(OperandIndex);
if (MO.isImm()) {
int64_t Value = MO.getImm();
MO.setImm(Value & 0x000fffffL);
Modified = true;
break;
}
}
} else if (MI.isInlineAsm()) // inline assembly immediate call
{
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("call")) {
// this is an inline call instruction
unsigned StartOp = InlineAsm::MIOp_FirstOperand;
// extracts the registers from the inline assembly instruction
for (unsigned i = StartOp, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isImm()) {
int64_t Value = MO.getImm();
MO.setImm(Value & 0x000fffffL);
Modified = true;
}
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** IgnoreZeroFlag pass
//*****************************************************************************
// This erratum fix fixes the overflow behavior of SDIVCC and UDIVCC
// instructions that exists on some earlier LEON processors. Where these
// instructions are detected, they are replaced by a sequence that will
// explicitly write the overflow bit flag if this is required.
//
char IgnoreZeroFlag::ID = 0;
IgnoreZeroFlag::IgnoreZeroFlag(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool IgnoreZeroFlag::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::SDIVCCrr || Opcode == SP::SDIVCCri ||
Opcode == SP::UDIVCCrr || Opcode == SP::UDIVCCri) {
// split the current machine basic block - just after the sdivcc/udivcc
// instruction
// create a label that help us skip the zero flag update (of PSR -
// Processor Status Register)
// if conditions are not met
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
MachineFunction::iterator It =
std::next(MachineFunction::iterator(MBB));
MachineBasicBlock *dneBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, dneBB);
// Transfer the remainder of MBB and its successor edges to dneBB.
dneBB->splice(dneBB->begin(), &MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB.end());
dneBB->transferSuccessorsAndUpdatePHIs(&MBB);
MBB.addSuccessor(dneBB);
MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
// bvc - branch if overflow flag not set
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_VS);
// bnz - branch if not zero
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_NE);
// use the WRPSR (Write Processor State Register) instruction to set the
// zeo flag to 1
// create wr %g0, 1, %psr
BuildMI(MBB, NextMBBI, DL, TII.get(SP::WRPSRri))
.addReg(SP::G0)
.addImm(1);
BuildMI(MBB, NextMBBI, DL, TII.get(SP::NOP));
Modified = true;
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("sdivcc") ||
AsmString.startswith_lower("udivcc")) {
// this is an inline SDIVCC or UDIVCC instruction
// split the current machine basic block - just after the
// sdivcc/udivcc instruction
// create a label that help us skip the zero flag update (of PSR -
// Processor Status Register)
// if conditions are not met
const BasicBlock *LLVM_BB = MBB.getBasicBlock();
MachineFunction::iterator It =
std::next(MachineFunction::iterator(MBB));
MachineBasicBlock *dneBB = MF.CreateMachineBasicBlock(LLVM_BB);
MF.insert(It, dneBB);
// Transfer the remainder of MBB and its successor edges to dneBB.
dneBB->splice(dneBB->begin(), &MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB.end());
dneBB->transferSuccessorsAndUpdatePHIs(&MBB);
MBB.addSuccessor(dneBB);
MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
// bvc - branch if overflow flag not set
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_VS);
// bnz - branch if not zero
BuildMI(MBB, NextMBBI, DL, TII.get(SP::BCOND))
.addMBB(dneBB)
.addImm(SPCC::ICC_NE);
// use the WRPSR (Write Processor State Register) instruction to set
// the zeo flag to 1
// create wr %g0, 1, %psr
BuildMI(MBB, NextMBBI, DL, TII.get(SP::WRPSRri))
.addReg(SP::G0)
.addImm(1);
BuildMI(MBB, NextMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** InsertNOPDoublePrecision pass
//*****************************************************************************
// This erratum fix for some earlier LEON processors fixes a problem where a
// double precision load will not yield the correct result if used in FMUL,
// FDIV, FADD, FSUB or FSQRT instructions later. If this sequence is detected,
// inserting a NOP between the two instructions will fix the erratum.
// 1.scans the code after register allocation;
// 2.checks for the problem conditions as described in the AT697E erratum
// “Odd-Numbered FPU Register Dependency not Properly Checked in some
// Double-Precision FPU Operations”;
// 3.inserts NOPs if the problem exists.
//
char InsertNOPDoublePrecision::ID = 0;
InsertNOPDoublePrecision::InsertNOPDoublePrecision(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool InsertNOPDoublePrecision::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::LDDFri || Opcode == SP::LDDFrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
MachineInstr &NMI = *NMBBI;
unsigned NextOpcode = NMI.getOpcode();
// NMI.print(errs());
if (NextOpcode == SP::FADDD || NextOpcode == SP::FSUBD ||
NextOpcode == SP::FMULD || NextOpcode == SP::FDIVD) {
int RegAIndex = GetRegIndexForOperand(MI, 0);
int RegBIndex = GetRegIndexForOperand(NMI, 0);
int RegCIndex =
GetRegIndexForOperand(NMI, 2); // Second source operand is index 2
int RegDIndex =
GetRegIndexForOperand(NMI, 1); // Destination operand is index 1
if ((RegAIndex == RegBIndex + 1 && RegBIndex == RegDIndex) ||
(RegAIndex == RegCIndex + 1 && RegCIndex == RegDIndex) ||
(RegAIndex == RegBIndex + 1 && RegCIndex == RegDIndex) ||
(RegAIndex == RegCIndex + 1 && RegBIndex == RegDIndex)) {
// Insert NOP between the two instructions.
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
// Check the errata patterns that only happen for FADDD and FMULD
if (Modified == false &&
(NextOpcode == SP::FADDD || NextOpcode == SP::FMULD)) {
RegAIndex = GetRegIndexForOperand(MI, 1);
if (RegAIndex == RegBIndex + 1 && RegBIndex == RegCIndex &&
RegBIndex == RegDIndex) {
// Insert NOP between the two instructions.
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
} else if (NextOpcode == SP::FSQRTD) {
int RegAIndex = GetRegIndexForOperand(MI, 1);
int RegBIndex = GetRegIndexForOperand(NMI, 0);
int RegCIndex = GetRegIndexForOperand(NMI, 1);
if (RegAIndex == RegBIndex + 1 && RegBIndex == RegCIndex) {
// Insert NOP between the two instructions.
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** PreventRoundChange pass
//*****************************************************************************
// To prevent any explicit change of the default rounding mode, this pass
// detects any call of the fesetround function and removes this call from the
// list of generated operations.
//
char PreventRoundChange::ID = 0;
PreventRoundChange::PreventRoundChange(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool PreventRoundChange::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL && MI.getNumOperands() > 0) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isGlobal()) {
StringRef FuncName = MO.getGlobal()->getName();
if (FuncName.compare_lower("fesetround") == 0) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FlushCacheLineSWAP pass
//*****************************************************************************
// This pass inserts FLUSHW just before any SWAP atomic instruction.
//
char FlushCacheLineSWAP::ID = 0;
FlushCacheLineSWAP::FlushCacheLineSWAP(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool FlushCacheLineSWAP::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::SWAPrr || Opcode == SP::SWAPri ||
Opcode == SP::LDSTUBrr || Opcode == SP::LDSTUBri) {
// insert flush and 5 NOPs before the swap/ldstub instruction
BuildMI(MBB, MBBI, DL, TII.get(SP::FLUSH));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
Modified = true;
} else if (MI.isInlineAsm()) {
StringRef AsmString =
MI.getOperand(InlineAsm::MIOp_AsmString).getSymbolName();
if (AsmString.startswith_lower("swap") ||
AsmString.startswith_lower("ldstub")) {
// this is an inline swap or ldstub instruction
// insert flush and 5 NOPs before the swap/ldstub instruction
BuildMI(MBB, MBBI, DL, TII.get(SP::FLUSH));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** InsertNOPsLoadStore pass
//*****************************************************************************
// This pass shall insert NOPs between floating point loads and stores when the
// following circumstances are present [5]:
// Pattern 1:
// 1. single-precision load or single-precision FPOP to register %fX, where X is
// the same register as the store being checked;
// 2. single-precision load or single-precision FPOP to register %fY , where Y
// is the opposite register in the same double-precision pair;
// 3. 0-3 instructions of any kind, except stores from %fX or %fY or operations
// with %fX as destination;
// 4. the store (from register %fX) being considered.
// Pattern 2:
// 1. double-precision FPOP;
// 2. any number of operations on any kind, except no double-precision FPOP and
// at most one (less than two) single-precision or single-to-double FPOPs;
// 3. the store (from register %fX) being considered.
//
char InsertNOPsLoadStore::ID = 0;
InsertNOPsLoadStore::InsertNOPsLoadStore(TargetMachine &tm)
: LEONMachineFunctionPass(tm, ID) {}
bool InsertNOPsLoadStore::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
MachineInstr *Pattern1FirstInstruction = NULL;
MachineInstr *Pattern2FirstInstruction = NULL;
unsigned int StoreInstructionsToCheck = 0;
int FxRegIndex, FyRegIndex;
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
if (StoreInstructionsToCheck > 0) {
if (((MI.getOpcode() == SP::STFrr || MI.getOpcode() == SP::STFri) &&
(GetRegIndexForOperand(MI, LAST_OPERAND) == FxRegIndex ||
GetRegIndexForOperand(MI, LAST_OPERAND) == FyRegIndex)) ||
GetRegIndexForOperand(MI, 0) == FxRegIndex) {
// Insert four NOPs
for (unsigned InsertedCount = 0; InsertedCount < 4; InsertedCount++) {
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
}
Modified = true;
}
StoreInstructionsToCheck--;
}
switch (MI.getOpcode()) {
// Watch for Pattern 1 FPop instructions
case SP::LDrr:
case SP::LDri:
case SP::LDFrr:
case SP::LDFri:
case SP::FADDS:
case SP::FSUBS:
case SP::FMULS:
case SP::FDIVS:
case SP::FSQRTS:
case SP::FCMPS:
case SP::FMOVS:
case SP::FNEGS:
case SP::FABSS:
case SP::FITOS:
case SP::FSTOI:
case SP::FITOD:
case SP::FDTOI:
case SP::FDTOS:
if (Pattern1FirstInstruction != NULL) {
FxRegIndex = GetRegIndexForOperand(*Pattern1FirstInstruction, 0);
FyRegIndex = GetRegIndexForOperand(MI, 0);
// Check to see if these registers are part of the same double
// precision
// register pair.
int DoublePrecRegIndexForX = (FxRegIndex - SP::F0) / 2;
int DoublePrecRegIndexForY = (FyRegIndex - SP::F0) / 2;
if (DoublePrecRegIndexForX == DoublePrecRegIndexForY)
StoreInstructionsToCheck = 4;
}
Pattern1FirstInstruction = &MI;
break;
// End of Pattern 1
// Search for Pattern 2
case SP::FADDD:
case SP::FSUBD:
case SP::FMULD:
case SP::FDIVD:
case SP::FSQRTD:
case SP::FCMPD:
Pattern2FirstInstruction = &MI;
Pattern1FirstInstruction = NULL;
break;
case SP::STFrr:
case SP::STFri:
case SP::STDFrr:
case SP::STDFri:
if (Pattern2FirstInstruction != NULL) {
if (GetRegIndexForOperand(MI, LAST_OPERAND) ==
GetRegIndexForOperand(*Pattern2FirstInstruction, 0)) {
// Insert four NOPs
for (unsigned InsertedCount = 0; InsertedCount < 4;
InsertedCount++) {
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
}
Pattern2FirstInstruction = NULL;
}
}
Pattern1FirstInstruction = NULL;
break;
// End of Pattern 2
default:
// Ensure we don't count debug-only values while we're testing for the
// patterns.
if (!MI.isDebugValue())
Pattern1FirstInstruction = NULL;
break;
}
}
}
return Modified;
}
|