| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 
 | ============================
Clang Compiler User's Manual
============================
.. contents::
   :local:
Introduction
============
The Clang Compiler is an open-source compiler for the C family of
programming languages, aiming to be the best in class implementation of
these languages. Clang builds on the LLVM optimizer and code generator,
allowing it to provide high-quality optimization and code generation
support for many targets. For more general information, please see the
`Clang Web Site <http://clang.llvm.org>`_ or the `LLVM Web
Site <http://llvm.org>`_.
This document describes important notes about using Clang as a compiler
for an end-user, documenting the supported features, command line
options, etc. If you are interested in using Clang to build a tool that
processes code, please see :doc:`InternalsManual`. If you are interested in the
`Clang Static Analyzer <http://clang-analyzer.llvm.org>`_, please see its web
page.
Clang is designed to support the C family of programming languages,
which includes :ref:`C <c>`, :ref:`Objective-C <objc>`, :ref:`C++ <cxx>`, and
:ref:`Objective-C++ <objcxx>` as well as many dialects of those. For
language-specific information, please see the corresponding language
specific section:
-  :ref:`C Language <c>`: K&R C, ANSI C89, ISO C90, ISO C94 (C89+AMD1), ISO
   C99 (+TC1, TC2, TC3).
-  :ref:`Objective-C Language <objc>`: ObjC 1, ObjC 2, ObjC 2.1, plus
   variants depending on base language.
-  :ref:`C++ Language <cxx>`
-  :ref:`Objective C++ Language <objcxx>`
In addition to these base languages and their dialects, Clang supports a
broad variety of language extensions, which are documented in the
corresponding language section. These extensions are provided to be
compatible with the GCC, Microsoft, and other popular compilers as well
as to improve functionality through Clang-specific features. The Clang
driver and language features are intentionally designed to be as
compatible with the GNU GCC compiler as reasonably possible, easing
migration from GCC to Clang. In most cases, code "just works".
Clang also provides an alternative driver, :ref:`clang-cl`, that is designed
to be compatible with the Visual C++ compiler, cl.exe.
In addition to language specific features, Clang has a variety of
features that depend on what CPU architecture or operating system is
being compiled for. Please see the :ref:`Target-Specific Features and
Limitations <target_features>` section for more details.
The rest of the introduction introduces some basic :ref:`compiler
terminology <terminology>` that is used throughout this manual and
contains a basic :ref:`introduction to using Clang <basicusage>` as a
command line compiler.
.. _terminology:
Terminology
-----------
Front end, parser, backend, preprocessor, undefined behavior,
diagnostic, optimizer
.. _basicusage:
Basic Usage
-----------
Intro to how to use a C compiler for newbies.
compile + link compile then link debug info enabling optimizations
picking a language to use, defaults to C11 by default. Autosenses based
on extension. using a makefile
Command Line Options
====================
This section is generally an index into other sections. It does not go
into depth on the ones that are covered by other sections. However, the
first part introduces the language selection and other high level
options like :option:`-c`, :option:`-g`, etc.
Options to Control Error and Warning Messages
---------------------------------------------
.. option:: -Werror
  Turn warnings into errors.
.. This is in plain monospaced font because it generates the same label as
.. -Werror, and Sphinx complains.
``-Werror=foo``
  Turn warning "foo" into an error.
.. option:: -Wno-error=foo
  Turn warning "foo" into an warning even if :option:`-Werror` is specified.
.. option:: -Wfoo
  Enable warning "foo".
.. option:: -Wno-foo
  Disable warning "foo".
.. option:: -w
  Disable all diagnostics.
.. option:: -Weverything
  :ref:`Enable all diagnostics. <diagnostics_enable_everything>`
.. option:: -pedantic
  Warn on language extensions.
.. option:: -pedantic-errors
  Error on language extensions.
.. option:: -Wsystem-headers
  Enable warnings from system headers.
.. option:: -ferror-limit=123
  Stop emitting diagnostics after 123 errors have been produced. The default is
  20, and the error limit can be disabled with `-ferror-limit=0`.
.. option:: -ftemplate-backtrace-limit=123
  Only emit up to 123 template instantiation notes within the template
  instantiation backtrace for a single warning or error. The default is 10, and
  the limit can be disabled with `-ftemplate-backtrace-limit=0`.
.. _cl_diag_formatting:
Formatting of Diagnostics
^^^^^^^^^^^^^^^^^^^^^^^^^
Clang aims to produce beautiful diagnostics by default, particularly for
new users that first come to Clang. However, different people have
different preferences, and sometimes Clang is driven not by a human,
but by a program that wants consistent and easily parsable output. For
these cases, Clang provides a wide range of options to control the exact
output format of the diagnostics that it generates.
.. _opt_fshow-column:
**-f[no-]show-column**
   Print column number in diagnostic.
   This option, which defaults to on, controls whether or not Clang
   prints the column number of a diagnostic. For example, when this is
   enabled, Clang will print something like:
   ::
         test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
                //
   When this is disabled, Clang will print "test.c:28: warning..." with
   no column number.
   The printed column numbers count bytes from the beginning of the
   line; take care if your source contains multibyte characters.
.. _opt_fshow-source-location:
**-f[no-]show-source-location**
   Print source file/line/column information in diagnostic.
   This option, which defaults to on, controls whether or not Clang
   prints the filename, line number and column number of a diagnostic.
   For example, when this is enabled, Clang will print something like:
   ::
         test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
                //
   When this is disabled, Clang will not print the "test.c:28:8: "
   part.
.. _opt_fcaret-diagnostics:
**-f[no-]caret-diagnostics**
   Print source line and ranges from source code in diagnostic.
   This option, which defaults to on, controls whether or not Clang
   prints the source line, source ranges, and caret when emitting a
   diagnostic. For example, when this is enabled, Clang will print
   something like:
   ::
         test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
                //
**-f[no-]color-diagnostics**
   This option, which defaults to on when a color-capable terminal is
   detected, controls whether or not Clang prints diagnostics in color.
   When this option is enabled, Clang will use colors to highlight
   specific parts of the diagnostic, e.g.,
   .. nasty hack to not lose our dignity
   .. raw:: html
       <pre>
         <b><span style="color:black">test.c:28:8: <span style="color:magenta">warning</span>: extra tokens at end of #endif directive [-Wextra-tokens]</span></b>
         #endif bad
                <span style="color:green">^</span>
                <span style="color:green">//</span>
       </pre>
   When this is disabled, Clang will just print:
   ::
         test.c:2:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
                //
**-fansi-escape-codes**
   Controls whether ANSI escape codes are used instead of the Windows Console
   API to output colored diagnostics. This option is only used on Windows and
   defaults to off.
.. option:: -fdiagnostics-format=clang/msvc/vi
   Changes diagnostic output format to better match IDEs and command line tools.
   This option controls the output format of the filename, line number,
   and column printed in diagnostic messages. The options, and their
   affect on formatting a simple conversion diagnostic, follow:
   **clang** (default)
       ::
           t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int'
   **msvc**
       ::
           t.c(3,11) : warning: conversion specifies type 'char *' but the argument has type 'int'
   **vi**
       ::
           t.c +3:11: warning: conversion specifies type 'char *' but the argument has type 'int'
.. _opt_fdiagnostics-show-option:
**-f[no-]diagnostics-show-option**
   Enable ``[-Woption]`` information in diagnostic line.
   This option, which defaults to on, controls whether or not Clang
   prints the associated :ref:`warning group <cl_diag_warning_groups>`
   option name when outputting a warning diagnostic. For example, in
   this output:
   ::
         test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
                //
   Passing **-fno-diagnostics-show-option** will prevent Clang from
   printing the [:ref:`-Wextra-tokens <opt_Wextra-tokens>`] information in
   the diagnostic. This information tells you the flag needed to enable
   or disable the diagnostic, either from the command line or through
   :ref:`#pragma GCC diagnostic <pragma_GCC_diagnostic>`.
.. _opt_fdiagnostics-show-category:
.. option:: -fdiagnostics-show-category=none/id/name
   Enable printing category information in diagnostic line.
   This option, which defaults to "none", controls whether or not Clang
   prints the category associated with a diagnostic when emitting it.
   Each diagnostic may or many not have an associated category, if it
   has one, it is listed in the diagnostic categorization field of the
   diagnostic line (in the []'s).
   For example, a format string warning will produce these three
   renditions based on the setting of this option:
   ::
         t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat]
         t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,1]
         t.c:3:11: warning: conversion specifies type 'char *' but the argument has type 'int' [-Wformat,Format String]
   This category can be used by clients that want to group diagnostics
   by category, so it should be a high level category. We want dozens
   of these, not hundreds or thousands of them.
.. _opt_fdiagnostics-fixit-info:
**-f[no-]diagnostics-fixit-info**
   Enable "FixIt" information in the diagnostics output.
   This option, which defaults to on, controls whether or not Clang
   prints the information on how to fix a specific diagnostic
   underneath it when it knows. For example, in this output:
   ::
         test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
                //
   Passing **-fno-diagnostics-fixit-info** will prevent Clang from
   printing the "//" line at the end of the message. This information
   is useful for users who may not understand what is wrong, but can be
   confusing for machine parsing.
.. _opt_fdiagnostics-print-source-range-info:
**-fdiagnostics-print-source-range-info**
   Print machine parsable information about source ranges.
   This option makes Clang print information about source ranges in a machine
   parsable format after the file/line/column number information. The
   information is a simple sequence of brace enclosed ranges, where each range
   lists the start and end line/column locations. For example, in this output:
   ::
       exprs.c:47:15:{47:8-47:14}{47:17-47:24}: error: invalid operands to binary expression ('int *' and '_Complex float')
          P = (P-42) + Gamma*4;
              ~~~~~~ ^ ~~~~~~~
   The {}'s are generated by -fdiagnostics-print-source-range-info.
   The printed column numbers count bytes from the beginning of the
   line; take care if your source contains multibyte characters.
.. option:: -fdiagnostics-parseable-fixits
   Print Fix-Its in a machine parseable form.
   This option makes Clang print available Fix-Its in a machine
   parseable format at the end of diagnostics. The following example
   illustrates the format:
   ::
        fix-it:"t.cpp":{7:25-7:29}:"Gamma"
   The range printed is a half-open range, so in this example the
   characters at column 25 up to but not including column 29 on line 7
   in t.cpp should be replaced with the string "Gamma". Either the
   range or the replacement string may be empty (representing strict
   insertions and strict erasures, respectively). Both the file name
   and the insertion string escape backslash (as "\\\\"), tabs (as
   "\\t"), newlines (as "\\n"), double quotes(as "\\"") and
   non-printable characters (as octal "\\xxx").
   The printed column numbers count bytes from the beginning of the
   line; take care if your source contains multibyte characters.
.. option:: -fno-elide-type
   Turns off elision in template type printing.
   The default for template type printing is to elide as many template
   arguments as possible, removing those which are the same in both
   template types, leaving only the differences. Adding this flag will
   print all the template arguments. If supported by the terminal,
   highlighting will still appear on differing arguments.
   Default:
   ::
       t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 1st argument;
   -fno-elide-type:
   ::
       t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<int, map<float, int>>>' to 'vector<map<int, map<double, int>>>' for 1st argument;
.. option:: -fdiagnostics-show-template-tree
   Template type diffing prints a text tree.
   For diffing large templated types, this option will cause Clang to
   display the templates as an indented text tree, one argument per
   line, with differences marked inline. This is compatible with
   -fno-elide-type.
   Default:
   ::
       t.cc:4:5: note: candidate function not viable: no known conversion from 'vector<map<[...], map<float, [...]>>>' to 'vector<map<[...], map<double, [...]>>>' for 1st argument;
   With :option:`-fdiagnostics-show-template-tree`:
   ::
       t.cc:4:5: note: candidate function not viable: no known conversion for 1st argument;
         vector<
           map<
             [...],
             map<
               [float != double],
               [...]>>>
.. _cl_diag_warning_groups:
Individual Warning Groups
^^^^^^^^^^^^^^^^^^^^^^^^^
TODO: Generate this from tblgen. Define one anchor per warning group.
.. _opt_wextra-tokens:
.. option:: -Wextra-tokens
   Warn about excess tokens at the end of a preprocessor directive.
   This option, which defaults to on, enables warnings about extra
   tokens at the end of preprocessor directives. For example:
   ::
         test.c:28:8: warning: extra tokens at end of #endif directive [-Wextra-tokens]
         #endif bad
                ^
   These extra tokens are not strictly conforming, and are usually best
   handled by commenting them out.
.. option:: -Wambiguous-member-template
   Warn about unqualified uses of a member template whose name resolves to
   another template at the location of the use.
   This option, which defaults to on, enables a warning in the
   following code:
   ::
       template<typename T> struct set{};
       template<typename T> struct trait { typedef const T& type; };
       struct Value {
         template<typename T> void set(typename trait<T>::type value) {}
       };
       void foo() {
         Value v;
         v.set<double>(3.2);
       }
   C++ [basic.lookup.classref] requires this to be an error, but,
   because it's hard to work around, Clang downgrades it to a warning
   as an extension.
.. option:: -Wbind-to-temporary-copy
   Warn about an unusable copy constructor when binding a reference to a
   temporary.
   This option enables warnings about binding a
   reference to a temporary when the temporary doesn't have a usable
   copy constructor. For example:
   ::
         struct NonCopyable {
           NonCopyable();
         private:
           NonCopyable(const NonCopyable&);
         };
         void foo(const NonCopyable&);
         void bar() {
           foo(NonCopyable());  // Disallowed in C++98; allowed in C++11.
         }
   ::
         struct NonCopyable2 {
           NonCopyable2();
           NonCopyable2(NonCopyable2&);
         };
         void foo(const NonCopyable2&);
         void bar() {
           foo(NonCopyable2());  // Disallowed in C++98; allowed in C++11.
         }
   Note that if ``NonCopyable2::NonCopyable2()`` has a default argument
   whose instantiation produces a compile error, that error will still
   be a hard error in C++98 mode even if this warning is turned off.
Options to Control Clang Crash Diagnostics
------------------------------------------
As unbelievable as it may sound, Clang does crash from time to time.
Generally, this only occurs to those living on the `bleeding
edge <http://llvm.org/releases/download.html#svn>`_. Clang goes to great
lengths to assist you in filing a bug report. Specifically, Clang
generates preprocessed source file(s) and associated run script(s) upon
a crash. These files should be attached to a bug report to ease
reproducibility of the failure. Below are the command line options to
control the crash diagnostics.
.. option:: -fno-crash-diagnostics
  Disable auto-generation of preprocessed source files during a clang crash.
The -fno-crash-diagnostics flag can be helpful for speeding the process
of generating a delta reduced test case.
Options to Emit Optimization Reports
------------------------------------
Optimization reports trace, at a high-level, all the major decisions
done by compiler transformations. For instance, when the inliner
decides to inline function ``foo()`` into ``bar()``, or the loop unroller
decides to unroll a loop N times, or the vectorizer decides to
vectorize a loop body.
Clang offers a family of flags which the optimizers can use to emit
a diagnostic in three cases:
1. When the pass makes a transformation (`-Rpass`).
2. When the pass fails to make a transformation (`-Rpass-missed`).
3. When the pass determines whether or not to make a transformation
   (`-Rpass-analysis`).
NOTE: Although the discussion below focuses on `-Rpass`, the exact
same options apply to `-Rpass-missed` and `-Rpass-analysis`.
Since there are dozens of passes inside the compiler, each of these flags
take a regular expression that identifies the name of the pass which should
emit the associated diagnostic. For example, to get a report from the inliner,
compile the code with:
.. code-block:: console
   $ clang -O2 -Rpass=inline code.cc -o code
   code.cc:4:25: remark: foo inlined into bar [-Rpass=inline]
   int bar(int j) { return foo(j, j - 2); }
                           ^
Note that remarks from the inliner are identified with `[-Rpass=inline]`.
To request a report from every optimization pass, you should use
`-Rpass=.*` (in fact, you can use any valid POSIX regular
expression). However, do not expect a report from every transformation
made by the compiler. Optimization remarks do not really make sense
outside of the major transformations (e.g., inlining, vectorization,
loop optimizations) and not every optimization pass supports this
feature.
Current limitations
^^^^^^^^^^^^^^^^^^^
1. Optimization remarks that refer to function names will display the
   mangled name of the function. Since these remarks are emitted by the
   back end of the compiler, it does not know anything about the input
   language, nor its mangling rules.
2. Some source locations are not displayed correctly. The front end has
   a more detailed source location tracking than the locations included
   in the debug info (e.g., the front end can locate code inside macro
   expansions). However, the locations used by `-Rpass` are
   translated from debug annotations. That translation can be lossy,
   which results in some remarks having no location information.
Other Options
-------------
Clang options that that don't fit neatly into other categories.
.. option:: -MV
  When emitting a dependency file, use formatting conventions appropriate
  for NMake or Jom. Ignored unless another option causes Clang to emit a
  dependency file.
When Clang emits a dependency file (e.g., you supplied the -M option)
most filenames can be written to the file without any special formatting.
Different Make tools will treat different sets of characters as "special"
and use different conventions for telling the Make tool that the character
is actually part of the filename. Normally Clang uses backslash to "escape"
a special character, which is the convention used by GNU Make. The -MV
option tells Clang to put double-quotes around the entire filename, which
is the convention used by NMake and Jom.
Language and Target-Independent Features
========================================
Controlling Errors and Warnings
-------------------------------
Clang provides a number of ways to control which code constructs cause
it to emit errors and warning messages, and how they are displayed to
the console.
Controlling How Clang Displays Diagnostics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
When Clang emits a diagnostic, it includes rich information in the
output, and gives you fine-grain control over which information is
printed. Clang has the ability to print this information, and these are
the options that control it:
#. A file/line/column indicator that shows exactly where the diagnostic
   occurs in your code [:ref:`-fshow-column <opt_fshow-column>`,
   :ref:`-fshow-source-location <opt_fshow-source-location>`].
#. A categorization of the diagnostic as a note, warning, error, or
   fatal error.
#. A text string that describes what the problem is.
#. An option that indicates how to control the diagnostic (for
   diagnostics that support it)
   [:ref:`-fdiagnostics-show-option <opt_fdiagnostics-show-option>`].
#. A :ref:`high-level category <diagnostics_categories>` for the diagnostic
   for clients that want to group diagnostics by class (for diagnostics
   that support it)
   [:ref:`-fdiagnostics-show-category <opt_fdiagnostics-show-category>`].
#. The line of source code that the issue occurs on, along with a caret
   and ranges that indicate the important locations
   [:ref:`-fcaret-diagnostics <opt_fcaret-diagnostics>`].
#. "FixIt" information, which is a concise explanation of how to fix the
   problem (when Clang is certain it knows)
   [:ref:`-fdiagnostics-fixit-info <opt_fdiagnostics-fixit-info>`].
#. A machine-parsable representation of the ranges involved (off by
   default)
   [:ref:`-fdiagnostics-print-source-range-info <opt_fdiagnostics-print-source-range-info>`].
For more information please see :ref:`Formatting of
Diagnostics <cl_diag_formatting>`.
Diagnostic Mappings
^^^^^^^^^^^^^^^^^^^
All diagnostics are mapped into one of these 6 classes:
-  Ignored
-  Note
-  Remark
-  Warning
-  Error
-  Fatal
.. _diagnostics_categories:
Diagnostic Categories
^^^^^^^^^^^^^^^^^^^^^
Though not shown by default, diagnostics may each be associated with a
high-level category. This category is intended to make it possible to
triage builds that produce a large number of errors or warnings in a
grouped way.
Categories are not shown by default, but they can be turned on with the
:ref:`-fdiagnostics-show-category <opt_fdiagnostics-show-category>` option.
When set to "``name``", the category is printed textually in the
diagnostic output. When it is set to "``id``", a category number is
printed. The mapping of category names to category id's can be obtained
by running '``clang   --print-diagnostic-categories``'.
Controlling Diagnostics via Command Line Flags
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TODO: -W flags, -pedantic, etc
.. _pragma_gcc_diagnostic:
Controlling Diagnostics via Pragmas
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Clang can also control what diagnostics are enabled through the use of
pragmas in the source code. This is useful for turning off specific
warnings in a section of source code. Clang supports GCC's pragma for
compatibility with existing source code, as well as several extensions.
The pragma may control any warning that can be used from the command
line. Warnings may be set to ignored, warning, error, or fatal. The
following example code will tell Clang or GCC to ignore the -Wall
warnings:
.. code-block:: c
  #pragma GCC diagnostic ignored "-Wall"
In addition to all of the functionality provided by GCC's pragma, Clang
also allows you to push and pop the current warning state. This is
particularly useful when writing a header file that will be compiled by
other people, because you don't know what warning flags they build with.
In the below example :option:`-Wextra-tokens` is ignored for only a single line
of code, after which the diagnostics return to whatever state had previously
existed.
.. code-block:: c
  #if foo
  #endif foo // warning: extra tokens at end of #endif directive
  #pragma clang diagnostic ignored "-Wextra-tokens"
  #if foo
  #endif foo // no warning
  #pragma clang diagnostic pop
The push and pop pragmas will save and restore the full diagnostic state
of the compiler, regardless of how it was set. That means that it is
possible to use push and pop around GCC compatible diagnostics and Clang
will push and pop them appropriately, while GCC will ignore the pushes
and pops as unknown pragmas. It should be noted that while Clang
supports the GCC pragma, Clang and GCC do not support the exact same set
of warnings, so even when using GCC compatible #pragmas there is no
guarantee that they will have identical behaviour on both compilers.
In addition to controlling warnings and errors generated by the compiler, it is
possible to generate custom warning and error messages through the following
pragmas:
.. code-block:: c
  // The following will produce warning messages
  #pragma message "some diagnostic message"
  #pragma GCC warning "TODO: replace deprecated feature"
  // The following will produce an error message
  #pragma GCC error "Not supported"
These pragmas operate similarly to the ``#warning`` and ``#error`` preprocessor
directives, except that they may also be embedded into preprocessor macros via
the C99 ``_Pragma`` operator, for example:
.. code-block:: c
  #define STR(X) #X
  #define DEFER(M,...) M(__VA_ARGS__)
  #define CUSTOM_ERROR(X) _Pragma(STR(GCC error(X " at line " DEFER(STR,__LINE__))))
  CUSTOM_ERROR("Feature not available");
Controlling Diagnostics in System Headers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Warnings are suppressed when they occur in system headers. By default,
an included file is treated as a system header if it is found in an
include path specified by ``-isystem``, but this can be overridden in
several ways.
The ``system_header`` pragma can be used to mark the current file as
being a system header. No warnings will be produced from the location of
the pragma onwards within the same file.
.. code-block:: c
  #if foo
  #endif foo // warning: extra tokens at end of #endif directive
  #pragma clang system_header
  #if foo
  #endif foo // no warning
The `--system-header-prefix=` and `--no-system-header-prefix=`
command-line arguments can be used to override whether subsets of an include
path are treated as system headers. When the name in a ``#include`` directive
is found within a header search path and starts with a system prefix, the
header is treated as a system header. The last prefix on the
command-line which matches the specified header name takes precedence.
For instance:
.. code-block:: console
  $ clang -Ifoo -isystem bar --system-header-prefix=x/ \
      --no-system-header-prefix=x/y/
Here, ``#include "x/a.h"`` is treated as including a system header, even
if the header is found in ``foo``, and ``#include "x/y/b.h"`` is treated
as not including a system header, even if the header is found in
``bar``.
A ``#include`` directive which finds a file relative to the current
directory is treated as including a system header if the including file
is treated as a system header.
.. _diagnostics_enable_everything:
Enabling All Diagnostics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In addition to the traditional ``-W`` flags, one can enable **all**
diagnostics by passing :option:`-Weverything`. This works as expected
with
:option:`-Werror`, and also includes the warnings from :option:`-pedantic`.
Note that when combined with :option:`-w` (which disables all warnings), that
flag wins.
Controlling Static Analyzer Diagnostics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
While not strictly part of the compiler, the diagnostics from Clang's
`static analyzer <http://clang-analyzer.llvm.org>`_ can also be
influenced by the user via changes to the source code. See the available
`annotations <http://clang-analyzer.llvm.org/annotations.html>`_ and the
analyzer's `FAQ
page <http://clang-analyzer.llvm.org/faq.html#exclude_code>`_ for more
information.
.. _usersmanual-precompiled-headers:
Precompiled Headers
-------------------
`Precompiled headers <http://en.wikipedia.org/wiki/Precompiled_header>`__
are a general approach employed by many compilers to reduce compilation
time. The underlying motivation of the approach is that it is common for
the same (and often large) header files to be included by multiple
source files. Consequently, compile times can often be greatly improved
by caching some of the (redundant) work done by a compiler to process
headers. Precompiled header files, which represent one of many ways to
implement this optimization, are literally files that represent an
on-disk cache that contains the vital information necessary to reduce
some of the work needed to process a corresponding header file. While
details of precompiled headers vary between compilers, precompiled
headers have been shown to be highly effective at speeding up program
compilation on systems with very large system headers (e.g., Mac OS X).
Generating a PCH File
^^^^^^^^^^^^^^^^^^^^^
To generate a PCH file using Clang, one invokes Clang with the
`-x <language>-header` option. This mirrors the interface in GCC
for generating PCH files:
.. code-block:: console
  $ gcc -x c-header test.h -o test.h.gch
  $ clang -x c-header test.h -o test.h.pch
Using a PCH File
^^^^^^^^^^^^^^^^
A PCH file can then be used as a prefix header when a :option:`-include`
option is passed to ``clang``:
.. code-block:: console
  $ clang -include test.h test.c -o test
The ``clang`` driver will first check if a PCH file for ``test.h`` is
available; if so, the contents of ``test.h`` (and the files it includes)
will be processed from the PCH file. Otherwise, Clang falls back to
directly processing the content of ``test.h``. This mirrors the behavior
of GCC.
.. note::
  Clang does *not* automatically use PCH files for headers that are directly
  included within a source file. For example:
  .. code-block:: console
    $ clang -x c-header test.h -o test.h.pch
    $ cat test.c
    #include "test.h"
    $ clang test.c -o test
  In this example, ``clang`` will not automatically use the PCH file for
  ``test.h`` since ``test.h`` was included directly in the source file and not
  specified on the command line using :option:`-include`.
Relocatable PCH Files
^^^^^^^^^^^^^^^^^^^^^
It is sometimes necessary to build a precompiled header from headers
that are not yet in their final, installed locations. For example, one
might build a precompiled header within the build tree that is then
meant to be installed alongside the headers. Clang permits the creation
of "relocatable" precompiled headers, which are built with a given path
(into the build directory) and can later be used from an installed
location.
To build a relocatable precompiled header, place your headers into a
subdirectory whose structure mimics the installed location. For example,
if you want to build a precompiled header for the header ``mylib.h``
that will be installed into ``/usr/include``, create a subdirectory
``build/usr/include`` and place the header ``mylib.h`` into that
subdirectory. If ``mylib.h`` depends on other headers, then they can be
stored within ``build/usr/include`` in a way that mimics the installed
location.
Building a relocatable precompiled header requires two additional
arguments. First, pass the ``--relocatable-pch`` flag to indicate that
the resulting PCH file should be relocatable. Second, pass
`-isysroot /path/to/build`, which makes all includes for your library
relative to the build directory. For example:
.. code-block:: console
  # clang -x c-header --relocatable-pch -isysroot /path/to/build /path/to/build/mylib.h mylib.h.pch
When loading the relocatable PCH file, the various headers used in the
PCH file are found from the system header root. For example, ``mylib.h``
can be found in ``/usr/include/mylib.h``. If the headers are installed
in some other system root, the `-isysroot` option can be used provide
a different system root from which the headers will be based. For
example, `-isysroot /Developer/SDKs/MacOSX10.4u.sdk` will look for
``mylib.h`` in ``/Developer/SDKs/MacOSX10.4u.sdk/usr/include/mylib.h``.
Relocatable precompiled headers are intended to be used in a limited
number of cases where the compilation environment is tightly controlled
and the precompiled header cannot be generated after headers have been
installed.
.. _controlling-code-generation:
Controlling Code Generation
---------------------------
Clang provides a number of ways to control code generation. The options
are listed below.
**-f[no-]sanitize=check1,check2,...**
   Turn on runtime checks for various forms of undefined or suspicious
   behavior.
   This option controls whether Clang adds runtime checks for various
   forms of undefined or suspicious behavior, and is disabled by
   default. If a check fails, a diagnostic message is produced at
   runtime explaining the problem. The main checks are:
   -  .. _opt_fsanitize_address:
      ``-fsanitize=address``:
      :doc:`AddressSanitizer`, a memory error
      detector.
   -  .. _opt_fsanitize_thread:
      ``-fsanitize=thread``: :doc:`ThreadSanitizer`, a data race detector.
   -  .. _opt_fsanitize_memory:
      ``-fsanitize=memory``: :doc:`MemorySanitizer`,
      a detector of uninitialized reads. Requires instrumentation of all
      program code.
   -  .. _opt_fsanitize_undefined:
      ``-fsanitize=undefined``: :doc:`UndefinedBehaviorSanitizer`,
      a fast and compatible undefined behavior checker.
   -  ``-fsanitize=dataflow``: :doc:`DataFlowSanitizer`, a general data
      flow analysis.
   -  ``-fsanitize=cfi``: :doc:`control flow integrity <ControlFlowIntegrity>`
      checks. Requires ``-flto``.
   -  ``-fsanitize=safe-stack``: :doc:`safe stack <SafeStack>`
      protection against stack-based memory corruption errors.
   There are more fine-grained checks available: see
   the :ref:`list <ubsan-checks>` of specific kinds of
   undefined behavior that can be detected and the :ref:`list <cfi-schemes>`
   of control flow integrity schemes.
   The ``-fsanitize=`` argument must also be provided when linking, in
   order to link to the appropriate runtime library.
   It is not possible to combine more than one of the ``-fsanitize=address``,
   ``-fsanitize=thread``, and ``-fsanitize=memory`` checkers in the same
   program.
**-f[no-]sanitize-recover=check1,check2,...**
**-f[no-]sanitize-recover=all**
   Controls which checks enabled by ``-fsanitize=`` flag are non-fatal.
   If the check is fatal, program will halt after the first error
   of this kind is detected and error report is printed.
   By default, non-fatal checks are those enabled by
   :doc:`UndefinedBehaviorSanitizer`,
   except for ``-fsanitize=return`` and ``-fsanitize=unreachable``. Some
   sanitizers may not support recovery (or not support it by default
   e.g. :doc:`AddressSanitizer`), and always crash the program after the issue
   is detected.
   Note that the ``-fsanitize-trap`` flag has precedence over this flag.
   This means that if a check has been configured to trap elsewhere on the
   command line, or if the check traps by default, this flag will not have
   any effect unless that sanitizer's trapping behavior is disabled with
   ``-fno-sanitize-trap``.
   For example, if a command line contains the flags ``-fsanitize=undefined
   -fsanitize-trap=undefined``, the flag ``-fsanitize-recover=alignment``
   will have no effect on its own; it will need to be accompanied by
   ``-fno-sanitize-trap=alignment``.
**-f[no-]sanitize-trap=check1,check2,...**
   Controls which checks enabled by the ``-fsanitize=`` flag trap. This
   option is intended for use in cases where the sanitizer runtime cannot
   be used (for instance, when building libc or a kernel module), or where
   the binary size increase caused by the sanitizer runtime is a concern.
   This flag is only compatible with :doc:`control flow integrity
   <ControlFlowIntegrity>` schemes and :doc:`UndefinedBehaviorSanitizer`
   checks other than ``vptr``. If this flag
   is supplied together with ``-fsanitize=undefined``, the ``vptr`` sanitizer
   will be implicitly disabled.
   This flag is enabled by default for sanitizers in the ``cfi`` group.
.. option:: -fsanitize-blacklist=/path/to/blacklist/file
   Disable or modify sanitizer checks for objects (source files, functions,
   variables, types) listed in the file. See
   :doc:`SanitizerSpecialCaseList` for file format description.
.. option:: -fno-sanitize-blacklist
   Don't use blacklist file, if it was specified earlier in the command line.
**-f[no-]sanitize-coverage=[type,features,...]**
   Enable simple code coverage in addition to certain sanitizers.
   See :doc:`SanitizerCoverage` for more details.
**-f[no-]sanitize-stats**
   Enable simple statistics gathering for the enabled sanitizers.
   See :doc:`SanitizerStats` for more details.
.. option:: -fsanitize-undefined-trap-on-error
   Deprecated alias for ``-fsanitize-trap=undefined``.
.. option:: -fsanitize-cfi-cross-dso
   Enable cross-DSO control flow integrity checks. This flag modifies
   the behavior of sanitizers in the ``cfi`` group to allow checking
   of cross-DSO virtual and indirect calls.
.. option:: -ffast-math
   Enable fast-math mode. This defines the ``__FAST_MATH__`` preprocessor
   macro, and lets the compiler make aggressive, potentially-lossy assumptions
   about floating-point math.  These include:
   * Floating-point math obeys regular algebraic rules for real numbers (e.g.
     ``+`` and ``*`` are associative, ``x/y == x * (1/y)``, and
     ``(a + b) * c == a * c + b * c``),
   * operands to floating-point operations are not equal to ``NaN`` and
     ``Inf``, and
   * ``+0`` and ``-0`` are interchangeable.
.. option:: -fwhole-program-vtables
   Enable whole-program vtable optimizations, such as single-implementation
   devirtualization and virtual constant propagation, for classes with
   :doc:`hidden LTO visibility <LTOVisibility>`. Requires ``-flto``.
.. option:: -fno-assume-sane-operator-new
   Don't assume that the C++'s new operator is sane.
   This option tells the compiler to do not assume that C++'s global
   new operator will always return a pointer that does not alias any
   other pointer when the function returns.
.. option:: -ftrap-function=[name]
   Instruct code generator to emit a function call to the specified
   function name for ``__builtin_trap()``.
   LLVM code generator translates ``__builtin_trap()`` to a trap
   instruction if it is supported by the target ISA. Otherwise, the
   builtin is translated into a call to ``abort``. If this option is
   set, then the code generator will always lower the builtin to a call
   to the specified function regardless of whether the target ISA has a
   trap instruction. This option is useful for environments (e.g.
   deeply embedded) where a trap cannot be properly handled, or when
   some custom behavior is desired.
.. option:: -ftls-model=[model]
   Select which TLS model to use.
   Valid values are: ``global-dynamic``, ``local-dynamic``,
   ``initial-exec`` and ``local-exec``. The default value is
   ``global-dynamic``. The compiler may use a different model if the
   selected model is not supported by the target, or if a more
   efficient model can be used. The TLS model can be overridden per
   variable using the ``tls_model`` attribute.
.. option:: -femulated-tls
   Select emulated TLS model, which overrides all -ftls-model choices.
   In emulated TLS mode, all access to TLS variables are converted to
   calls to __emutls_get_address in the runtime library.
.. option:: -mhwdiv=[values]
   Select the ARM modes (arm or thumb) that support hardware division
   instructions.
   Valid values are: ``arm``, ``thumb`` and ``arm,thumb``.
   This option is used to indicate which mode (arm or thumb) supports
   hardware division instructions. This only applies to the ARM
   architecture.
.. option:: -m[no-]crc
   Enable or disable CRC instructions.
   This option is used to indicate whether CRC instructions are to
   be generated. This only applies to the ARM architecture.
   CRC instructions are enabled by default on ARMv8.
.. option:: -mgeneral-regs-only
   Generate code which only uses the general purpose registers.
   This option restricts the generated code to use general registers
   only. This only applies to the AArch64 architecture.
.. option:: -mcompact-branches=[values]
   Control the usage of compact branches for MIPSR6.
   Valid values are: ``never``, ``optimal`` and ``always``.
   The default value is ``optimal`` which generates compact branches
   when a delay slot cannot be filled. ``never`` disables the usage of
   compact branches and ``always`` generates compact branches whenever
   possible.
**-f[no-]max-type-align=[number]**
   Instruct the code generator to not enforce a higher alignment than the given
   number (of bytes) when accessing memory via an opaque pointer or reference.
   This cap is ignored when directly accessing a variable or when the pointee
   type has an explicit “aligned” attribute.
   The value should usually be determined by the properties of the system allocator.
   Some builtin types, especially vector types, have very high natural alignments;
   when working with values of those types, Clang usually wants to use instructions
   that take advantage of that alignment.  However, many system allocators do
   not promise to return memory that is more than 8-byte or 16-byte-aligned.  Use
   this option to limit the alignment that the compiler can assume for an arbitrary
   pointer, which may point onto the heap.
   This option does not affect the ABI alignment of types; the layout of structs and
   unions and the value returned by the alignof operator remain the same.
   This option can be overridden on a case-by-case basis by putting an explicit
   “aligned” alignment on a struct, union, or typedef.  For example:
   .. code-block:: console
      #include <immintrin.h>
      // Make an aligned typedef of the AVX-512 16-int vector type.
      typedef __v16si __aligned_v16si __attribute__((aligned(64)));
      void initialize_vector(__aligned_v16si *v) {
        // The compiler may assume that ‘v’ is 64-byte aligned, regardless of the
        // value of -fmax-type-align.
      }
Profile Guided Optimization
---------------------------
Profile information enables better optimization. For example, knowing that a
branch is taken very frequently helps the compiler make better decisions when
ordering basic blocks. Knowing that a function ``foo`` is called more
frequently than another function ``bar`` helps the inliner.
Clang supports profile guided optimization with two different kinds of
profiling. A sampling profiler can generate a profile with very low runtime
overhead, or you can build an instrumented version of the code that collects
more detailed profile information. Both kinds of profiles can provide execution
counts for instructions in the code and information on branches taken and
function invocation.
Regardless of which kind of profiling you use, be careful to collect profiles
by running your code with inputs that are representative of the typical
behavior. Code that is not exercised in the profile will be optimized as if it
is unimportant, and the compiler may make poor optimization choices for code
that is disproportionately used while profiling.
Differences Between Sampling and Instrumentation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Although both techniques are used for similar purposes, there are important
differences between the two:
1. Profile data generated with one cannot be used by the other, and there is no
   conversion tool that can convert one to the other. So, a profile generated
   via ``-fprofile-instr-generate`` must be used with ``-fprofile-instr-use``.
   Similarly, sampling profiles generated by external profilers must be
   converted and used with ``-fprofile-sample-use``.
2. Instrumentation profile data can be used for code coverage analysis and
   optimization.
3. Sampling profiles can only be used for optimization. They cannot be used for
   code coverage analysis. Although it would be technically possible to use
   sampling profiles for code coverage, sample-based profiles are too
   coarse-grained for code coverage purposes; it would yield poor results.
4. Sampling profiles must be generated by an external tool. The profile
   generated by that tool must then be converted into a format that can be read
   by LLVM. The section on sampling profilers describes one of the supported
   sampling profile formats.
Using Sampling Profilers
^^^^^^^^^^^^^^^^^^^^^^^^
Sampling profilers are used to collect runtime information, such as
hardware counters, while your application executes. They are typically
very efficient and do not incur a large runtime overhead. The
sample data collected by the profiler can be used during compilation
to determine what the most executed areas of the code are.
Using the data from a sample profiler requires some changes in the way
a program is built. Before the compiler can use profiling information,
the code needs to execute under the profiler. The following is the
usual build cycle when using sample profilers for optimization:
1. Build the code with source line table information. You can use all the
   usual build flags that you always build your application with. The only
   requirement is that you add ``-gline-tables-only`` or ``-g`` to the
   command line. This is important for the profiler to be able to map
   instructions back to source line locations.
   .. code-block:: console
     $ clang++ -O2 -gline-tables-only code.cc -o code
2. Run the executable under a sampling profiler. The specific profiler
   you use does not really matter, as long as its output can be converted
   into the format that the LLVM optimizer understands. Currently, there
   exists a conversion tool for the Linux Perf profiler
   (https://perf.wiki.kernel.org/), so these examples assume that you
   are using Linux Perf to profile your code.
   .. code-block:: console
     $ perf record -b ./code
   Note the use of the ``-b`` flag. This tells Perf to use the Last Branch
   Record (LBR) to record call chains. While this is not strictly required,
   it provides better call information, which improves the accuracy of
   the profile data.
3. Convert the collected profile data to LLVM's sample profile format.
   This is currently supported via the AutoFDO converter ``create_llvm_prof``.
   It is available at http://github.com/google/autofdo. Once built and
   installed, you can convert the ``perf.data`` file to LLVM using
   the command:
   .. code-block:: console
     $ create_llvm_prof --binary=./code --out=code.prof
   This will read ``perf.data`` and the binary file ``./code`` and emit
   the profile data in ``code.prof``. Note that if you ran ``perf``
   without the ``-b`` flag, you need to use ``--use_lbr=false`` when
   calling ``create_llvm_prof``.
4. Build the code again using the collected profile. This step feeds
   the profile back to the optimizers. This should result in a binary
   that executes faster than the original one. Note that you are not
   required to build the code with the exact same arguments that you
   used in the first step. The only requirement is that you build the code
   with ``-gline-tables-only`` and ``-fprofile-sample-use``.
   .. code-block:: console
     $ clang++ -O2 -gline-tables-only -fprofile-sample-use=code.prof code.cc -o code
Sample Profile Formats
""""""""""""""""""""""
Since external profilers generate profile data in a variety of custom formats,
the data generated by the profiler must be converted into a format that can be
read by the backend. LLVM supports three different sample profile formats:
1. ASCII text. This is the easiest one to generate. The file is divided into
   sections, which correspond to each of the functions with profile
   information. The format is described below. It can also be generated from
   the binary or gcov formats using the ``llvm-profdata`` tool.
2. Binary encoding. This uses a more efficient encoding that yields smaller
   profile files. This is the format generated by the ``create_llvm_prof`` tool
   in http://github.com/google/autofdo.
3. GCC encoding. This is based on the gcov format, which is accepted by GCC. It
   is only interesting in environments where GCC and Clang co-exist. This
   encoding is only generated by the ``create_gcov`` tool in
   http://github.com/google/autofdo. It can be read by LLVM and
   ``llvm-profdata``, but it cannot be generated by either.
If you are using Linux Perf to generate sampling profiles, you can use the
conversion tool ``create_llvm_prof`` described in the previous section.
Otherwise, you will need to write a conversion tool that converts your
profiler's native format into one of these three.
Sample Profile Text Format
""""""""""""""""""""""""""
This section describes the ASCII text format for sampling profiles. It is,
arguably, the easiest one to generate. If you are interested in generating any
of the other two, consult the ``ProfileData`` library in in LLVM's source tree
(specifically, ``include/llvm/ProfileData/SampleProfReader.h``).
.. code-block:: console
    function1:total_samples:total_head_samples
     offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
     offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
     ...
     offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
     offsetA[.discriminator]: fnA:num_of_total_samples
      offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
      offsetA1[.discriminator]: number_of_samples [fn9:num fn10:num ... ]
      offsetB[.discriminator]: fnB:num_of_total_samples
       offsetB1[.discriminator]: number_of_samples [fn11:num fn12:num ... ]
This is a nested tree in which the identation represents the nesting level
of the inline stack. There are no blank lines in the file. And the spacing
within a single line is fixed. Additional spaces will result in an error
while reading the file.
Any line starting with the '#' character is completely ignored.
Inlined calls are represented with indentation. The Inline stack is a
stack of source locations in which the top of the stack represents the
leaf function, and the bottom of the stack represents the actual
symbol to which the instruction belongs.
Function names must be mangled in order for the profile loader to
match them in the current translation unit. The two numbers in the
function header specify how many total samples were accumulated in the
function (first number), and the total number of samples accumulated
in the prologue of the function (second number). This head sample
count provides an indicator of how frequently the function is invoked.
There are two types of lines in the function body.
-  Sampled line represents the profile information of a source location.
   ``offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]``
-  Callsite line represents the profile information of an inlined callsite.
   ``offsetA[.discriminator]: fnA:num_of_total_samples``
Each sampled line may contain several items. Some are optional (marked
below):
a. Source line offset. This number represents the line number
   in the function where the sample was collected. The line number is
   always relative to the line where symbol of the function is
   defined. So, if the function has its header at line 280, the offset
   13 is at line 293 in the file.
   Note that this offset should never be a negative number. This could
   happen in cases like macros. The debug machinery will register the
   line number at the point of macro expansion. So, if the macro was
   expanded in a line before the start of the function, the profile
   converter should emit a 0 as the offset (this means that the optimizers
   will not be able to associate a meaningful weight to the instructions
   in the macro).
b. [OPTIONAL] Discriminator. This is used if the sampled program
   was compiled with DWARF discriminator support
   (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
   DWARF discriminators are unsigned integer values that allow the
   compiler to distinguish between multiple execution paths on the
   same source line location.
   For example, consider the line of code ``if (cond) foo(); else bar();``.
   If the predicate ``cond`` is true 80% of the time, then the edge
   into function ``foo`` should be considered to be taken most of the
   time. But both calls to ``foo`` and ``bar`` are at the same source
   line, so a sample count at that line is not sufficient. The
   compiler needs to know which part of that line is taken more
   frequently.
   This is what discriminators provide. In this case, the calls to
   ``foo`` and ``bar`` will be at the same line, but will have
   different discriminator values. This allows the compiler to correctly
   set edge weights into ``foo`` and ``bar``.
c. Number of samples. This is an integer quantity representing the
   number of samples collected by the profiler at this source
   location.
d. [OPTIONAL] Potential call targets and samples. If present, this
   line contains a call instruction. This models both direct and
   number of samples. For example,
   .. code-block:: console
     130: 7  foo:3  bar:2  baz:7
   The above means that at relative line offset 130 there is a call
   instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
   with ``baz()`` being the relatively more frequently called target.
As an example, consider a program with the call chain ``main -> foo -> bar``.
When built with optimizations enabled, the compiler may inline the
calls to ``bar`` and ``foo`` inside ``main``. The generated profile
could then be something like this:
.. code-block:: console
    main:35504:0
    1: _Z3foov:35504
      2: _Z32bari:31977
      1.1: 31977
    2: 0
This profile indicates that there were a total of 35,504 samples
collected in main. All of those were at line 1 (the call to ``foo``).
Of those, 31,977 were spent inside the body of ``bar``. The last line
of the profile (``2: 0``) corresponds to line 2 inside ``main``. No
samples were collected there.
Profiling with Instrumentation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Clang also supports profiling via instrumentation. This requires building a
special instrumented version of the code and has some runtime
overhead during the profiling, but it provides more detailed results than a
sampling profiler. It also provides reproducible results, at least to the
extent that the code behaves consistently across runs.
Here are the steps for using profile guided optimization with
instrumentation:
1. Build an instrumented version of the code by compiling and linking with the
   ``-fprofile-instr-generate`` option.
   .. code-block:: console
     $ clang++ -O2 -fprofile-instr-generate code.cc -o code
2. Run the instrumented executable with inputs that reflect the typical usage.
   By default, the profile data will be written to a ``default.profraw`` file
   in the current directory. You can override that default by setting the
   ``LLVM_PROFILE_FILE`` environment variable to specify an alternate file.
   Any instance of ``%p`` in that file name will be replaced by the process
   ID, so that you can easily distinguish the profile output from multiple
   runs.
   .. code-block:: console
     $ LLVM_PROFILE_FILE="code-%p.profraw" ./code
3. Combine profiles from multiple runs and convert the "raw" profile format to
   the input expected by clang. Use the ``merge`` command of the
   ``llvm-profdata`` tool to do this.
   .. code-block:: console
     $ llvm-profdata merge -output=code.profdata code-*.profraw
   Note that this step is necessary even when there is only one "raw" profile,
   since the merge operation also changes the file format.
4. Build the code again using the ``-fprofile-instr-use`` option to specify the
   collected profile data.
   .. code-block:: console
     $ clang++ -O2 -fprofile-instr-use=code.profdata code.cc -o code
   You can repeat step 4 as often as you like without regenerating the
   profile. As you make changes to your code, clang may no longer be able to
   use the profile data. It will warn you when this happens.
Profile generation using an alternative instrumentation method can be
controlled by the GCC-compatible flags ``-fprofile-generate`` and
``-fprofile-use``. Although these flags are semantically equivalent to
their GCC counterparts, they *do not* handle GCC-compatible profiles.
They are only meant to implement GCC's semantics with respect to
profile creation and use.
.. option:: -fprofile-generate[=<dirname>]
  The ``-fprofile-generate`` and ``-fprofile-generate=`` flags will use
  an alterantive instrumentation method for profile generation. When
  given a directory name, it generates the profile file
  ``default.profraw`` in the directory named ``dirname``. If ``dirname``
  does not exist, it will be created at runtime. The environment variable
  ``LLVM_PROFILE_FILE`` can be used to override the directory and
  filename for the profile file at runtime. For example,
  .. code-block:: console
    $ clang++ -O2 -fprofile-generate=yyy/zzz code.cc -o code
  When ``code`` is executed, the profile will be written to the file
  ``yyy/zzz/default.profraw``. This can be altered at runtime via the
  ``LLVM_PROFILE_FILE`` environment variable:
  .. code-block:: console
    $ LLVM_PROFILE_FILE=/tmp/myprofile/code.profraw ./code
  The above invocation will produce the profile file
  ``/tmp/myprofile/code.profraw`` instead of ``yyy/zzz/default.profraw``.
  Notice that ``LLVM_PROFILE_FILE`` overrides the directory *and* the file
  name for the profile file.
.. option:: -fprofile-use[=<pathname>]
  Without any other arguments, ``-fprofile-use`` behaves identically to
  ``-fprofile-instr-use``. Otherwise, if ``pathname`` is the full path to a
  profile file, it reads from that file. If ``pathname`` is a directory name,
  it reads from ``pathname/default.profdata``.
Disabling Instrumentation
^^^^^^^^^^^^^^^^^^^^^^^^^
In certain situations, it may be useful to disable profile generation or use
for specific files in a build, without affecting the main compilation flags
used for the other files in the project.
In these cases, you can use the flag ``-fno-profile-instr-generate`` (or
``-fno-profile-generate``) to disable profile generation, and
``-fno-profile-instr-use`` (or ``-fno-profile-use``) to disable profile use.
Note that these flags should appear after the corresponding profile
flags to have an effect.
Controlling Debug Information
-----------------------------
Controlling Size of Debug Information
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Debug info kind generated by Clang can be set by one of the flags listed
below. If multiple flags are present, the last one is used.
.. option:: -g0
  Don't generate any debug info (default).
.. option:: -gline-tables-only
  Generate line number tables only.
  This kind of debug info allows to obtain stack traces with function names,
  file names and line numbers (by such tools as ``gdb`` or ``addr2line``).  It
  doesn't contain any other data (e.g. description of local variables or
  function parameters).
.. option:: -fstandalone-debug
  Clang supports a number of optimizations to reduce the size of debug
  information in the binary. They work based on the assumption that
  the debug type information can be spread out over multiple
  compilation units.  For instance, Clang will not emit type
  definitions for types that are not needed by a module and could be
  replaced with a forward declaration.  Further, Clang will only emit
  type info for a dynamic C++ class in the module that contains the
  vtable for the class.
  The **-fstandalone-debug** option turns off these optimizations.
  This is useful when working with 3rd-party libraries that don't come
  with debug information.  Note that Clang will never emit type
  information for types that are not referenced at all by the program.
.. option:: -fno-standalone-debug
   On Darwin **-fstandalone-debug** is enabled by default. The
   **-fno-standalone-debug** option can be used to get to turn on the
   vtable-based optimization described above.
.. option:: -g
  Generate complete debug info.
Controlling Debugger "Tuning"
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
While Clang generally emits standard DWARF debug info (http://dwarfstd.org),
different debuggers may know how to take advantage of different specific DWARF
features. You can "tune" the debug info for one of several different debuggers.
.. option:: -ggdb, -glldb, -gsce
  Tune the debug info for the ``gdb``, ``lldb``, or Sony Computer Entertainment
  debugger, respectively. Each of these options implies **-g**. (Therefore, if
  you want both **-gline-tables-only** and debugger tuning, the tuning option
  must come first.)
Comment Parsing Options
-----------------------
Clang parses Doxygen and non-Doxygen style documentation comments and attaches
them to the appropriate declaration nodes.  By default, it only parses
Doxygen-style comments and ignores ordinary comments starting with ``//`` and
``/*``.
.. option:: -Wdocumentation
  Emit warnings about use of documentation comments.  This warning group is off
  by default.
  This includes checking that ``\param`` commands name parameters that actually
  present in the function signature, checking that ``\returns`` is used only on
  functions that actually return a value etc.
.. option:: -Wno-documentation-unknown-command
  Don't warn when encountering an unknown Doxygen command.
.. option:: -fparse-all-comments
  Parse all comments as documentation comments (including ordinary comments
  starting with ``//`` and ``/*``).
.. option:: -fcomment-block-commands=[commands]
  Define custom documentation commands as block commands.  This allows Clang to
  construct the correct AST for these custom commands, and silences warnings
  about unknown commands.  Several commands must be separated by a comma
  *without trailing space*; e.g. ``-fcomment-block-commands=foo,bar`` defines
  custom commands ``\foo`` and ``\bar``.
  It is also possible to use ``-fcomment-block-commands`` several times; e.g.
  ``-fcomment-block-commands=foo -fcomment-block-commands=bar`` does the same
  as above.
.. _c:
C Language Features
===================
The support for standard C in clang is feature-complete except for the
C99 floating-point pragmas.
Extensions supported by clang
-----------------------------
See :doc:`LanguageExtensions`.
Differences between various standard modes
------------------------------------------
clang supports the -std option, which changes what language mode clang
uses. The supported modes for C are c89, gnu89, c94, c99, gnu99, c11,
gnu11, and various aliases for those modes. If no -std option is
specified, clang defaults to gnu11 mode. Many C99 and C11 features are
supported in earlier modes as a conforming extension, with a warning. Use
``-pedantic-errors`` to request an error if a feature from a later standard
revision is used in an earlier mode.
Differences between all ``c*`` and ``gnu*`` modes:
-  ``c*`` modes define "``__STRICT_ANSI__``".
-  Target-specific defines not prefixed by underscores, like "linux",
   are defined in ``gnu*`` modes.
-  Trigraphs default to being off in ``gnu*`` modes; they can be enabled by
   the -trigraphs option.
-  The parser recognizes "asm" and "typeof" as keywords in ``gnu*`` modes;
   the variants "``__asm__``" and "``__typeof__``" are recognized in all
   modes.
-  The Apple "blocks" extension is recognized by default in ``gnu*`` modes
   on some platforms; it can be enabled in any mode with the "-fblocks"
   option.
-  Arrays that are VLA's according to the standard, but which can be
   constant folded by the frontend are treated as fixed size arrays.
   This occurs for things like "int X[(1, 2)];", which is technically a
   VLA. ``c*`` modes are strictly compliant and treat these as VLAs.
Differences between ``*89`` and ``*99`` modes:
-  The ``*99`` modes default to implementing "inline" as specified in C99,
   while the ``*89`` modes implement the GNU version. This can be
   overridden for individual functions with the ``__gnu_inline__``
   attribute.
-  Digraphs are not recognized in c89 mode.
-  The scope of names defined inside a "for", "if", "switch", "while",
   or "do" statement is different. (example: "``if ((struct x {int
   x;}*)0) {}``".)
-  ``__STDC_VERSION__`` is not defined in ``*89`` modes.
-  "inline" is not recognized as a keyword in c89 mode.
-  "restrict" is not recognized as a keyword in ``*89`` modes.
-  Commas are allowed in integer constant expressions in ``*99`` modes.
-  Arrays which are not lvalues are not implicitly promoted to pointers
   in ``*89`` modes.
-  Some warnings are different.
Differences between ``*99`` and ``*11`` modes:
-  Warnings for use of C11 features are disabled.
-  ``__STDC_VERSION__`` is defined to ``201112L`` rather than ``199901L``.
c94 mode is identical to c89 mode except that digraphs are enabled in
c94 mode (FIXME: And ``__STDC_VERSION__`` should be defined!).
GCC extensions not implemented yet
----------------------------------
clang tries to be compatible with gcc as much as possible, but some gcc
extensions are not implemented yet:
-  clang does not support decimal floating point types (``_Decimal32`` and
   friends) or fixed-point types (``_Fract`` and friends); nobody has
   expressed interest in these features yet, so it's hard to say when
   they will be implemented.
-  clang does not support nested functions; this is a complex feature
   which is infrequently used, so it is unlikely to be implemented
   anytime soon. In C++11 it can be emulated by assigning lambda
   functions to local variables, e.g:
   .. code-block:: cpp
     auto const local_function = [&](int parameter) {
       // Do something
     };
     ...
     local_function(1);
-  clang does not support static initialization of flexible array
   members. This appears to be a rarely used extension, but could be
   implemented pending user demand.
-  clang does not support
   ``__builtin_va_arg_pack``/``__builtin_va_arg_pack_len``. This is
   used rarely, but in some potentially interesting places, like the
   glibc headers, so it may be implemented pending user demand. Note
   that because clang pretends to be like GCC 4.2, and this extension
   was introduced in 4.3, the glibc headers will not try to use this
   extension with clang at the moment.
-  clang does not support the gcc extension for forward-declaring
   function parameters; this has not shown up in any real-world code
   yet, though, so it might never be implemented.
This is not a complete list; if you find an unsupported extension
missing from this list, please send an e-mail to cfe-dev. This list
currently excludes C++; see :ref:`C++ Language Features <cxx>`. Also, this
list does not include bugs in mostly-implemented features; please see
the `bug
tracker <http://llvm.org/bugs/buglist.cgi?quicksearch=product%3Aclang+component%3A-New%2BBugs%2CAST%2CBasic%2CDriver%2CHeaders%2CLLVM%2BCodeGen%2Cparser%2Cpreprocessor%2CSemantic%2BAnalyzer>`_
for known existing bugs (FIXME: Is there a section for bug-reporting
guidelines somewhere?).
Intentionally unsupported GCC extensions
----------------------------------------
-  clang does not support the gcc extension that allows variable-length
   arrays in structures. This is for a few reasons: one, it is tricky to
   implement, two, the extension is completely undocumented, and three,
   the extension appears to be rarely used. Note that clang *does*
   support flexible array members (arrays with a zero or unspecified
   size at the end of a structure).
-  clang does not have an equivalent to gcc's "fold"; this means that
   clang doesn't accept some constructs gcc might accept in contexts
   where a constant expression is required, like "x-x" where x is a
   variable.
-  clang does not support ``__builtin_apply`` and friends; this extension
   is extremely obscure and difficult to implement reliably.
.. _c_ms:
Microsoft extensions
--------------------
clang has support for many extensions from Microsoft Visual C++. To enable these
extensions, use the ``-fms-extensions`` command-line option. This is the default
for Windows targets. Clang does not implement every pragma or declspec provided
by MSVC, but the popular ones, such as ``__declspec(dllexport)`` and ``#pragma
comment(lib)`` are well supported.
clang has a ``-fms-compatibility`` flag that makes clang accept enough
invalid C++ to be able to parse most Microsoft headers. For example, it
allows `unqualified lookup of dependent base class members
<http://clang.llvm.org/compatibility.html#dep_lookup_bases>`_, which is
a common compatibility issue with clang. This flag is enabled by default
for Windows targets.
``-fdelayed-template-parsing`` lets clang delay parsing of function template
definitions until the end of a translation unit. This flag is enabled by
default for Windows targets.
For compatibility with existing code that compiles with MSVC, clang defines the
``_MSC_VER`` and ``_MSC_FULL_VER`` macros. These default to the values of 1800
and 180000000 respectively, making clang look like an early release of Visual
C++ 2013. The ``-fms-compatibility-version=`` flag overrides these values.  It
accepts a dotted version tuple, such as 19.00.23506. Changing the MSVC
compatibility version makes clang behave more like that version of MSVC. For
example, ``-fms-compatibility-version=19`` will enable C++14 features and define
``char16_t`` and ``char32_t`` as builtin types.
.. _cxx:
C++ Language Features
=====================
clang fully implements all of standard C++98 except for exported
templates (which were removed in C++11), and all of standard C++11
and the current draft standard for C++1y.
Controlling implementation limits
---------------------------------
.. option:: -fbracket-depth=N
  Sets the limit for nested parentheses, brackets, and braces to N.  The
  default is 256.
.. option:: -fconstexpr-depth=N
  Sets the limit for recursive constexpr function invocations to N.  The
  default is 512.
.. option:: -ftemplate-depth=N
  Sets the limit for recursively nested template instantiations to N.  The
  default is 256.
.. option:: -foperator-arrow-depth=N
  Sets the limit for iterative calls to 'operator->' functions to N.  The
  default is 256.
.. _objc:
Objective-C Language Features
=============================
.. _objcxx:
Objective-C++ Language Features
===============================
.. _openmp:
OpenMP Features
===============
Clang supports all OpenMP 3.1 directives and clauses.  In addition, some
features of OpenMP 4.0 are supported.  For example, ``#pragma omp simd``,
``#pragma omp for simd``, ``#pragma omp parallel for simd`` directives, extended
set of atomic constructs, ``proc_bind`` clause for all parallel-based
directives, ``depend`` clause for ``#pragma omp task`` directive (except for
array sections), ``#pragma omp cancel`` and ``#pragma omp cancellation point``
directives, and ``#pragma omp taskgroup`` directive.
Use `-fopenmp` to enable OpenMP. Support for OpenMP can be disabled with
`-fno-openmp`.
Controlling implementation limits
---------------------------------
.. option:: -fopenmp-use-tls
 Controls code generation for OpenMP threadprivate variables. In presence of
 this option all threadprivate variables are generated the same way as thread
 local variables, using TLS support. If `-fno-openmp-use-tls`
 is provided or target does not support TLS, code generation for threadprivate
 variables relies on OpenMP runtime library.
.. _target_features:
Target-Specific Features and Limitations
========================================
CPU Architectures Features and Limitations
------------------------------------------
X86
^^^
The support for X86 (both 32-bit and 64-bit) is considered stable on
Darwin (Mac OS X), Linux, FreeBSD, and Dragonfly BSD: it has been tested
to correctly compile many large C, C++, Objective-C, and Objective-C++
codebases.
On ``x86_64-mingw32``, passing i128(by value) is incompatible with the
Microsoft x64 calling convention. You might need to tweak
``WinX86_64ABIInfo::classify()`` in lib/CodeGen/TargetInfo.cpp.
For the X86 target, clang supports the `-m16` command line
argument which enables 16-bit code output. This is broadly similar to
using ``asm(".code16gcc")`` with the GNU toolchain. The generated code
and the ABI remains 32-bit but the assembler emits instructions
appropriate for a CPU running in 16-bit mode, with address-size and
operand-size prefixes to enable 32-bit addressing and operations.
ARM
^^^
The support for ARM (specifically ARMv6 and ARMv7) is considered stable
on Darwin (iOS): it has been tested to correctly compile many large C,
C++, Objective-C, and Objective-C++ codebases. Clang only supports a
limited number of ARM architectures. It does not yet fully support
ARMv5, for example.
PowerPC
^^^^^^^
The support for PowerPC (especially PowerPC64) is considered stable
on Linux and FreeBSD: it has been tested to correctly compile many
large C and C++ codebases. PowerPC (32bit) is still missing certain
features (e.g. PIC code on ELF platforms).
Other platforms
^^^^^^^^^^^^^^^
clang currently contains some support for other architectures (e.g. Sparc);
however, significant pieces of code generation are still missing, and they
haven't undergone significant testing.
clang contains limited support for the MSP430 embedded processor, but
both the clang support and the LLVM backend support are highly
experimental.
Other platforms are completely unsupported at the moment. Adding the
minimal support needed for parsing and semantic analysis on a new
platform is quite easy; see ``lib/Basic/Targets.cpp`` in the clang source
tree. This level of support is also sufficient for conversion to LLVM IR
for simple programs. Proper support for conversion to LLVM IR requires
adding code to ``lib/CodeGen/CGCall.cpp`` at the moment; this is likely to
change soon, though. Generating assembly requires a suitable LLVM
backend.
Operating System Features and Limitations
-----------------------------------------
Darwin (Mac OS X)
^^^^^^^^^^^^^^^^^
Thread Sanitizer is not supported.
Windows
^^^^^^^
Clang has experimental support for targeting "Cygming" (Cygwin / MinGW)
platforms.
See also :ref:`Microsoft Extensions <c_ms>`.
Cygwin
""""""
Clang works on Cygwin-1.7.
MinGW32
"""""""
Clang works on some mingw32 distributions. Clang assumes directories as
below;
-  ``C:/mingw/include``
-  ``C:/mingw/lib``
-  ``C:/mingw/lib/gcc/mingw32/4.[3-5].0/include/c++``
On MSYS, a few tests might fail.
MinGW-w64
"""""""""
For 32-bit (i686-w64-mingw32), and 64-bit (x86\_64-w64-mingw32), Clang
assumes as below;
-  ``GCC versions 4.5.0 to 4.5.3, 4.6.0 to 4.6.2, or 4.7.0 (for the C++ header search path)``
-  ``some_directory/bin/gcc.exe``
-  ``some_directory/bin/clang.exe``
-  ``some_directory/bin/clang++.exe``
-  ``some_directory/bin/../include/c++/GCC_version``
-  ``some_directory/bin/../include/c++/GCC_version/x86_64-w64-mingw32``
-  ``some_directory/bin/../include/c++/GCC_version/i686-w64-mingw32``
-  ``some_directory/bin/../include/c++/GCC_version/backward``
-  ``some_directory/bin/../x86_64-w64-mingw32/include``
-  ``some_directory/bin/../i686-w64-mingw32/include``
-  ``some_directory/bin/../include``
This directory layout is standard for any toolchain you will find on the
official `MinGW-w64 website <http://mingw-w64.sourceforge.net>`_.
Clang expects the GCC executable "gcc.exe" compiled for
``i686-w64-mingw32`` (or ``x86_64-w64-mingw32``) to be present on PATH.
`Some tests might fail <http://llvm.org/bugs/show_bug.cgi?id=9072>`_ on
``x86_64-w64-mingw32``.
.. _clang-cl:
clang-cl
========
clang-cl is an alternative command-line interface to Clang driver, designed for
compatibility with the Visual C++ compiler, cl.exe.
To enable clang-cl to find system headers, libraries, and the linker when run
from the command-line, it should be executed inside a Visual Studio Native Tools
Command Prompt or a regular Command Prompt where the environment has been set
up using e.g. `vcvars32.bat <http://msdn.microsoft.com/en-us/library/f2ccy3wt.aspx>`_.
clang-cl can also be used from inside Visual Studio  by using an LLVM Platform
Toolset.
Command-Line Options
--------------------
To be compatible with cl.exe, clang-cl supports most of the same command-line
options. Those options can start with either ``/`` or ``-``. It also supports
some of Clang's core options, such as the ``-W`` options.
Options that are known to clang-cl, but not currently supported, are ignored
with a warning. For example:
  ::
    clang-cl.exe: warning: argument unused during compilation: '/AI'
To suppress warnings about unused arguments, use the ``-Qunused-arguments`` option.
Options that are not known to clang-cl will be ignored by default. Use the
``-Werror=unknown-argument`` option in order to treat them as errors. If these
options are spelled with a leading ``/``, they will be mistaken for a filename:
  ::
    clang-cl.exe: error: no such file or directory: '/foobar'
Please `file a bug <http://llvm.org/bugs/enter_bug.cgi?product=clang&component=Driver>`_
for any valid cl.exe flags that clang-cl does not understand.
Execute ``clang-cl /?`` to see a list of supported options:
  ::
    CL.EXE COMPATIBILITY OPTIONS:
      /?                     Display available options
      /arch:<value>          Set architecture for code generation
      /Brepro-               Emit an object file which cannot be reproduced over time
      /Brepro                Emit an object file which can be reproduced over time
      /C                     Don't discard comments when preprocessing
      /c                     Compile only
      /D <macro[=value]>     Define macro
      /EH<value>             Exception handling model
      /EP                    Disable linemarker output and preprocess to stdout
      /E                     Preprocess to stdout
      /fallback              Fall back to cl.exe if clang-cl fails to compile
      /FA                    Output assembly code file during compilation
      /Fa<file or directory> Output assembly code to this file during compilation (with /FA)
      /Fe<file or directory> Set output executable file or directory (ends in / or \)
      /FI <value>            Include file before parsing
      /Fi<file>              Set preprocess output file name (with /P)
      /Fo<file or directory> Set output object file, or directory (ends in / or \) (with /c)
      /fp:except-
      /fp:except
      /fp:fast
      /fp:precise
      /fp:strict
      /Fp<filename>          Set pch filename (with /Yc and /Yu)
      /GA                    Assume thread-local variables are defined in the executable
      /Gd                    Set __cdecl as a default calling convention
      /GF-                   Disable string pooling
      /GR-                   Disable emission of RTTI data
      /GR                    Enable emission of RTTI data
      /Gr                    Set __fastcall as a default calling convention
      /GS-                   Disable buffer security check
      /GS                    Enable buffer security check
      /Gs<value>             Set stack probe size
      /Gv                    Set __vectorcall as a default calling convention
      /Gw-                   Don't put each data item in its own section
      /Gw                    Put each data item in its own section
      /GX-                   Enable exception handling
      /GX                    Enable exception handling
      /Gy-                   Don't put each function in its own section
      /Gy                    Put each function in its own section
      /Gz                    Set __stdcall as a default calling convention
      /help                  Display available options
      /imsvc <dir>           Add directory to system include search path, as if part of %INCLUDE%
      /I <dir>               Add directory to include search path
      /J                     Make char type unsigned
      /LDd                   Create debug DLL
      /LD                    Create DLL
      /link <options>        Forward options to the linker
      /MDd                   Use DLL debug run-time
      /MD                    Use DLL run-time
      /MTd                   Use static debug run-time
      /MT                    Use static run-time
      /Od                    Disable optimization
      /Oi-                   Disable use of builtin functions
      /Oi                    Enable use of builtin functions
      /Os                    Optimize for size
      /Ot                    Optimize for speed
      /O<value>              Optimization level
      /o <file or directory> Set output file or directory (ends in / or \)
      /P                     Preprocess to file
      /Qvec-                 Disable the loop vectorization passes
      /Qvec                  Enable the loop vectorization passes
      /showIncludes          Print info about included files to stderr
      /std:<value>           Language standard to compile for
      /TC                    Treat all source files as C
      /Tc <filename>         Specify a C source file
      /TP                    Treat all source files as C++
      /Tp <filename>         Specify a C++ source file
      /U <macro>             Undefine macro
      /vd<value>             Control vtordisp placement
      /vmb                   Use a best-case representation method for member pointers
      /vmg                   Use a most-general representation for member pointers
      /vmm                   Set the default most-general representation to multiple inheritance
      /vms                   Set the default most-general representation to single inheritance
      /vmv                   Set the default most-general representation to virtual inheritance
      /volatile:iso          Volatile loads and stores have standard semantics
      /volatile:ms           Volatile loads and stores have acquire and release semantics
      /W0                    Disable all warnings
      /W1                    Enable -Wall
      /W2                    Enable -Wall
      /W3                    Enable -Wall
      /W4                    Enable -Wall and -Wextra
      /Wall                  Enable -Wall and -Wextra
      /WX-                   Do not treat warnings as errors
      /WX                    Treat warnings as errors
      /w                     Disable all warnings
      /Y-                    Disable precompiled headers, overrides /Yc and /Yu
      /Yc<filename>          Generate a pch file for all code up to and including <filename>
      /Yu<filename>          Load a pch file and use it instead of all code up to and including <filename>
      /Z7                    Enable CodeView debug information in object files
      /Zc:sizedDealloc-      Disable C++14 sized global deallocation functions
      /Zc:sizedDealloc       Enable C++14 sized global deallocation functions
      /Zc:strictStrings      Treat string literals as const
      /Zc:threadSafeInit-    Disable thread-safe initialization of static variables
      /Zc:threadSafeInit     Enable thread-safe initialization of static variables
      /Zc:trigraphs-         Disable trigraphs (default)
      /Zc:trigraphs          Enable trigraphs
      /Zd                    Emit debug line number tables only
      /Zi                    Alias for /Z7. Does not produce PDBs.
      /Zl                    Don't mention any default libraries in the object file
      /Zp                    Set the default maximum struct packing alignment to 1
      /Zp<value>             Specify the default maximum struct packing alignment
      /Zs                    Syntax-check only
    OPTIONS:
      -###                    Print (but do not run) the commands to run for this compilation
      --analyze               Run the static analyzer
      -fansi-escape-codes     Use ANSI escape codes for diagnostics
      -fcolor-diagnostics     Use colors in diagnostics
      -fdiagnostics-parseable-fixits
                              Print fix-its in machine parseable form
      -fms-compatibility-version=<value>
                              Dot-separated value representing the Microsoft compiler version
                              number to report in _MSC_VER (0 = don't define it (default))
      -fms-compatibility      Enable full Microsoft Visual C++ compatibility
      -fms-extensions         Accept some non-standard constructs supported by the Microsoft compiler
      -fmsc-version=<value>   Microsoft compiler version number to report in _MSC_VER
                              (0 = don't define it (default))
      -fno-sanitize-coverage=<value>
                              Disable specified features of coverage instrumentation for Sanitizers
      -fno-sanitize-recover=<value>
                              Disable recovery for specified sanitizers
      -fno-sanitize-trap=<value>
                              Disable trapping for specified sanitizers
      -fsanitize-blacklist=<value>
                              Path to blacklist file for sanitizers
      -fsanitize-coverage=<value>
                              Specify the type of coverage instrumentation for Sanitizers
      -fsanitize-recover=<value>
                              Enable recovery for specified sanitizers
      -fsanitize-trap=<value> Enable trapping for specified sanitizers
      -fsanitize=<check>      Turn on runtime checks for various forms of undefined or suspicious
                              behavior. See user manual for available checks
      -gcodeview              Generate CodeView debug information
      -gline-tables-only      Emit debug line number tables only
      -miamcu                 Use Intel MCU ABI
      -mllvm <value>          Additional arguments to forward to LLVM's option processing
      -Qunused-arguments      Don't emit warning for unused driver arguments
      -R<remark>              Enable the specified remark
      --target=<value>        Generate code for the given target
      -v                      Show commands to run and use verbose output
      -W<warning>             Enable the specified warning
      -Xclang <arg>           Pass <arg> to the clang compiler
The /fallback Option
^^^^^^^^^^^^^^^^^^^^
When clang-cl is run with the ``/fallback`` option, it will first try to
compile files itself. For any file that it fails to compile, it will fall back
and try to compile the file by invoking cl.exe.
This option is intended to be used as a temporary means to build projects where
clang-cl cannot successfully compile all the files. clang-cl may fail to compile
a file either because it cannot generate code for some C++ feature, or because
it cannot parse some Microsoft language extension.
 |