1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// Scudo Hardened Allocator implementation.
/// It uses the sanitizer_common allocator as a base and aims at mitigating
/// heap corruption vulnerabilities. It provides a checksum-guarded chunk
/// header, a delayed free list, and additional sanity checks.
///
//===----------------------------------------------------------------------===//
#include "scudo_allocator.h"
#include "scudo_utils.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_quarantine.h"
#include <limits.h>
#include <pthread.h>
#include <smmintrin.h>
#include <atomic>
#include <cstring>
namespace __scudo {
const uptr AllocatorSpace = ~0ULL;
const uptr AllocatorSize = 0x10000000000ULL;
const uptr MinAlignmentLog = 4; // 16 bytes for x64
const uptr MaxAlignmentLog = 24;
typedef DefaultSizeClassMap SizeClassMap;
typedef SizeClassAllocator64<AllocatorSpace, AllocatorSize, 0, SizeClassMap>
PrimaryAllocator;
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator>
ScudoAllocator;
static ScudoAllocator &getAllocator();
static thread_local Xorshift128Plus Prng;
// Global static cookie, initialized at start-up.
static u64 Cookie;
enum ChunkState : u8 {
ChunkAvailable = 0,
ChunkAllocated = 1,
ChunkQuarantine = 2
};
typedef unsigned __int128 PackedHeader;
typedef std::atomic<PackedHeader> AtomicPackedHeader;
// Our header requires 128-bit of storage on x64 (the only platform supported
// as of now), which fits nicely with the alignment requirements.
// Having the offset saves us from using functions such as GetBlockBegin, that
// is fairly costly. Our first implementation used the MetaData as well, which
// offers the advantage of being stored away from the chunk itself, but
// accessing it was costly as well.
// The header will be atomically loaded and stored using the 16-byte primitives
// offered by the platform (likely requires cmpxchg16b support).
struct UnpackedHeader {
// 1st 8 bytes
u16 Checksum : 16;
u64 RequestedSize : 40; // Needed for reallocation purposes.
u8 State : 2; // available, allocated, or quarantined
u8 AllocType : 2; // malloc, new, new[], or memalign
u8 Unused_0_ : 4;
// 2nd 8 bytes
u64 Offset : 20; // Offset from the beginning of the backend
// allocation to the beginning chunk itself, in
// multiples of MinAlignment. See comment about its
// maximum value and test in Initialize.
u64 Unused_1_ : 28;
u16 Salt : 16;
};
COMPILER_CHECK(sizeof(UnpackedHeader) == sizeof(PackedHeader));
const uptr ChunkHeaderSize = sizeof(PackedHeader);
struct ScudoChunk : UnpackedHeader {
// We can't use the offset member of the chunk itself, as we would double
// fetch it without any warranty that it wouldn't have been tampered. To
// prevent this, we work with a local copy of the header.
void *AllocBeg(UnpackedHeader *Header) {
return reinterpret_cast<void *>(
reinterpret_cast<uptr>(this) - (Header->Offset << MinAlignmentLog));
}
// CRC32 checksum of the Chunk pointer and its ChunkHeader.
// It currently uses the Intel Nehalem SSE4.2 crc32 64-bit instruction.
u16 Checksum(UnpackedHeader *Header) const {
u64 HeaderHolder[2];
memcpy(HeaderHolder, Header, sizeof(HeaderHolder));
u64 Crc = _mm_crc32_u64(Cookie, reinterpret_cast<uptr>(this));
// This is somewhat of a shortcut. The checksum is stored in the 16 least
// significant bits of the first 8 bytes of the header, hence zero-ing
// those bits out. It would be more valid to zero the checksum field of the
// UnpackedHeader, but would require holding an additional copy of it.
Crc = _mm_crc32_u64(Crc, HeaderHolder[0] & 0xffffffffffff0000ULL);
Crc = _mm_crc32_u64(Crc, HeaderHolder[1]);
return static_cast<u16>(Crc);
}
// Loads and unpacks the header, verifying the checksum in the process.
void loadHeader(UnpackedHeader *NewUnpackedHeader) const {
const AtomicPackedHeader *AtomicHeader =
reinterpret_cast<const AtomicPackedHeader *>(this);
PackedHeader NewPackedHeader =
AtomicHeader->load(std::memory_order_relaxed);
*NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
if ((NewUnpackedHeader->Unused_0_ != 0) ||
(NewUnpackedHeader->Unused_1_ != 0) ||
(NewUnpackedHeader->Checksum != Checksum(NewUnpackedHeader))) {
dieWithMessage("ERROR: corrupted chunk header at address %p\n", this);
}
}
// Packs and stores the header, computing the checksum in the process.
void storeHeader(UnpackedHeader *NewUnpackedHeader) {
NewUnpackedHeader->Checksum = Checksum(NewUnpackedHeader);
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
AtomicHeader->store(NewPackedHeader, std::memory_order_relaxed);
}
// Packs and stores the header, computing the checksum in the process. We
// compare the current header with the expected provided one to ensure that
// we are not being raced by a corruption occurring in another thread.
void compareExchangeHeader(UnpackedHeader *NewUnpackedHeader,
UnpackedHeader *OldUnpackedHeader) {
NewUnpackedHeader->Checksum = Checksum(NewUnpackedHeader);
PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
if (!AtomicHeader->compare_exchange_strong(OldPackedHeader,
NewPackedHeader,
std::memory_order_relaxed,
std::memory_order_relaxed)) {
dieWithMessage("ERROR: race on chunk header at address %p\n", this);
}
}
};
static bool ScudoInitIsRunning = false;
static pthread_once_t GlobalInited = PTHREAD_ONCE_INIT;
static pthread_key_t pkey;
static thread_local bool ThreadInited = false;
static thread_local bool ThreadTornDown = false;
static thread_local AllocatorCache Cache;
static void teardownThread(void *p) {
uptr v = reinterpret_cast<uptr>(p);
// The glibc POSIX thread-local-storage deallocation routine calls user
// provided destructors in a loop of PTHREAD_DESTRUCTOR_ITERATIONS.
// We want to be called last since other destructors might call free and the
// like, so we wait until PTHREAD_DESTRUCTOR_ITERATIONS before draining the
// quarantine and swallowing the cache.
if (v < PTHREAD_DESTRUCTOR_ITERATIONS) {
pthread_setspecific(pkey, reinterpret_cast<void *>(v + 1));
return;
}
drainQuarantine();
getAllocator().DestroyCache(&Cache);
ThreadTornDown = true;
}
static void initInternal() {
SanitizerToolName = "Scudo";
CHECK(!ScudoInitIsRunning && "Scudo init calls itself!");
ScudoInitIsRunning = true;
initFlags();
AllocatorOptions Options;
Options.setFrom(getFlags(), common_flags());
initAllocator(Options);
ScudoInitIsRunning = false;
}
static void initGlobal() {
pthread_key_create(&pkey, teardownThread);
initInternal();
}
static void NOINLINE initThread() {
pthread_once(&GlobalInited, initGlobal);
pthread_setspecific(pkey, reinterpret_cast<void *>(1));
getAllocator().InitCache(&Cache);
ThreadInited = true;
}
struct QuarantineCallback {
explicit QuarantineCallback(AllocatorCache *Cache)
: Cache_(Cache) {}
// Chunk recycling function, returns a quarantined chunk to the backend.
void Recycle(ScudoChunk *Chunk) {
UnpackedHeader Header;
Chunk->loadHeader(&Header);
if (Header.State != ChunkQuarantine) {
dieWithMessage("ERROR: invalid chunk state when recycling address %p\n",
Chunk);
}
void *Ptr = Chunk->AllocBeg(&Header);
getAllocator().Deallocate(Cache_, Ptr);
}
/// Internal quarantine allocation and deallocation functions.
void *Allocate(uptr Size) {
// The internal quarantine memory cannot be protected by us. But the only
// structures allocated are QuarantineBatch, that are 8KB for x64. So we
// will use mmap for those, and given that Deallocate doesn't pass a size
// in, we enforce the size of the allocation to be sizeof(QuarantineBatch).
// TODO(kostyak): switching to mmap impacts greatly performances, we have
// to find another solution
// CHECK_EQ(Size, sizeof(QuarantineBatch));
// return MmapOrDie(Size, "QuarantineBatch");
return getAllocator().Allocate(Cache_, Size, 1, false);
}
void Deallocate(void *Ptr) {
// UnmapOrDie(Ptr, sizeof(QuarantineBatch));
getAllocator().Deallocate(Cache_, Ptr);
}
AllocatorCache *Cache_;
};
typedef Quarantine<QuarantineCallback, ScudoChunk> ScudoQuarantine;
typedef ScudoQuarantine::Cache QuarantineCache;
static thread_local QuarantineCache ThreadQuarantineCache;
void AllocatorOptions::setFrom(const Flags *f, const CommonFlags *cf) {
MayReturnNull = cf->allocator_may_return_null;
QuarantineSizeMb = f->QuarantineSizeMb;
ThreadLocalQuarantineSizeKb = f->ThreadLocalQuarantineSizeKb;
DeallocationTypeMismatch = f->DeallocationTypeMismatch;
DeleteSizeMismatch = f->DeleteSizeMismatch;
ZeroContents = f->ZeroContents;
}
void AllocatorOptions::copyTo(Flags *f, CommonFlags *cf) const {
cf->allocator_may_return_null = MayReturnNull;
f->QuarantineSizeMb = QuarantineSizeMb;
f->ThreadLocalQuarantineSizeKb = ThreadLocalQuarantineSizeKb;
f->DeallocationTypeMismatch = DeallocationTypeMismatch;
f->DeleteSizeMismatch = DeleteSizeMismatch;
f->ZeroContents = ZeroContents;
}
struct Allocator {
static const uptr MaxAllowedMallocSize = 1ULL << 40;
static const uptr MinAlignment = 1 << MinAlignmentLog;
static const uptr MaxAlignment = 1 << MaxAlignmentLog; // 16 MB
ScudoAllocator BackendAllocator;
ScudoQuarantine AllocatorQuarantine;
// The fallback caches are used when the thread local caches have been
// 'detroyed' on thread tear-down. They are protected by a Mutex as they can
// be accessed by different threads.
StaticSpinMutex FallbackMutex;
AllocatorCache FallbackAllocatorCache;
QuarantineCache FallbackQuarantineCache;
bool DeallocationTypeMismatch;
bool ZeroContents;
bool DeleteSizeMismatch;
explicit Allocator(LinkerInitialized)
: AllocatorQuarantine(LINKER_INITIALIZED),
FallbackQuarantineCache(LINKER_INITIALIZED) {}
void init(const AllocatorOptions &Options) {
// Currently SSE 4.2 support is required. This might change later.
CHECK(testCPUFeature(SSE4_2)); // for crc32
// Verify that the header offset field can hold the maximum offset. In the
// worst case scenario, the backend allocation is already aligned on
// MaxAlignment, so in order to store the header and still be aligned, we
// add an extra MaxAlignment. As a result, the offset from the beginning of
// the backend allocation to the chunk will be MaxAlignment -
// ChunkHeaderSize.
UnpackedHeader Header = {};
uptr MaximumOffset = (MaxAlignment - ChunkHeaderSize) >> MinAlignmentLog;
Header.Offset = MaximumOffset;
if (Header.Offset != MaximumOffset) {
dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
"header\n");
}
DeallocationTypeMismatch = Options.DeallocationTypeMismatch;
DeleteSizeMismatch = Options.DeleteSizeMismatch;
ZeroContents = Options.ZeroContents;
BackendAllocator.Init(Options.MayReturnNull);
AllocatorQuarantine.Init(static_cast<uptr>(Options.QuarantineSizeMb) << 20,
static_cast<uptr>(
Options.ThreadLocalQuarantineSizeKb) << 10);
BackendAllocator.InitCache(&FallbackAllocatorCache);
Cookie = Prng.Next();
}
// Allocates a chunk.
void *allocate(uptr Size, uptr Alignment, AllocType Type) {
if (UNLIKELY(!ThreadInited))
initThread();
if (!IsPowerOfTwo(Alignment)) {
dieWithMessage("ERROR: malloc alignment is not a power of 2\n");
}
if (Alignment > MaxAlignment)
return BackendAllocator.ReturnNullOrDie();
if (Alignment < MinAlignment)
Alignment = MinAlignment;
if (Size == 0)
Size = 1;
if (Size >= MaxAllowedMallocSize)
return BackendAllocator.ReturnNullOrDie();
uptr RoundedSize = RoundUpTo(Size, MinAlignment);
uptr ExtraBytes = ChunkHeaderSize;
if (Alignment > MinAlignment)
ExtraBytes += Alignment;
uptr NeededSize = RoundedSize + ExtraBytes;
if (NeededSize >= MaxAllowedMallocSize)
return BackendAllocator.ReturnNullOrDie();
void *Ptr;
if (LIKELY(!ThreadTornDown)) {
Ptr = BackendAllocator.Allocate(&Cache, NeededSize, MinAlignment);
} else {
SpinMutexLock l(&FallbackMutex);
Ptr = BackendAllocator.Allocate(&FallbackAllocatorCache, NeededSize,
MinAlignment);
}
if (!Ptr)
return BackendAllocator.ReturnNullOrDie();
// If requested, we will zero out the entire contents of the returned chunk.
if (ZeroContents && BackendAllocator.FromPrimary(Ptr))
memset(Ptr, 0, BackendAllocator.GetActuallyAllocatedSize(Ptr));
uptr AllocBeg = reinterpret_cast<uptr>(Ptr);
uptr ChunkBeg = AllocBeg + ChunkHeaderSize;
if (!IsAligned(ChunkBeg, Alignment))
ChunkBeg = RoundUpTo(ChunkBeg, Alignment);
CHECK_LE(ChunkBeg + Size, AllocBeg + NeededSize);
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - ChunkHeaderSize);
UnpackedHeader Header = {};
Header.State = ChunkAllocated;
Header.Offset = (ChunkBeg - ChunkHeaderSize - AllocBeg) >> MinAlignmentLog;
Header.AllocType = Type;
Header.RequestedSize = Size;
Header.Salt = static_cast<u16>(Prng.Next());
Chunk->storeHeader(&Header);
void *UserPtr = reinterpret_cast<void *>(ChunkBeg);
// TODO(kostyak): hooks sound like a terrible idea security wise but might
// be needed for things to work properly?
// if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(UserPtr, Size);
return UserPtr;
}
// Deallocates a Chunk, which means adding it to the delayed free list (or
// Quarantine).
void deallocate(void *UserPtr, uptr DeleteSize, AllocType Type) {
if (UNLIKELY(!ThreadInited))
initThread();
// TODO(kostyak): see hook comment above
// if (&__sanitizer_free_hook) __sanitizer_free_hook(UserPtr);
if (!UserPtr)
return;
uptr ChunkBeg = reinterpret_cast<uptr>(UserPtr);
if (!IsAligned(ChunkBeg, MinAlignment)) {
dieWithMessage("ERROR: attempted to deallocate a chunk not properly "
"aligned at address %p\n", UserPtr);
}
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - ChunkHeaderSize);
UnpackedHeader OldHeader;
Chunk->loadHeader(&OldHeader);
if (OldHeader.State != ChunkAllocated) {
dieWithMessage("ERROR: invalid chunk state when deallocating address "
"%p\n", Chunk);
}
UnpackedHeader NewHeader = OldHeader;
NewHeader.State = ChunkQuarantine;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
if (DeallocationTypeMismatch) {
// The deallocation type has to match the allocation one.
if (NewHeader.AllocType != Type) {
// With the exception of memalign'd Chunks, that can be still be free'd.
if (NewHeader.AllocType != FromMemalign || Type != FromMalloc) {
dieWithMessage("ERROR: allocation type mismatch on address %p\n",
Chunk);
}
}
}
uptr Size = NewHeader.RequestedSize;
if (DeleteSizeMismatch) {
if (DeleteSize && DeleteSize != Size) {
dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n",
Chunk);
}
}
if (LIKELY(!ThreadTornDown)) {
AllocatorQuarantine.Put(&ThreadQuarantineCache,
QuarantineCallback(&Cache), Chunk, Size);
} else {
SpinMutexLock l(&FallbackMutex);
AllocatorQuarantine.Put(&FallbackQuarantineCache,
QuarantineCallback(&FallbackAllocatorCache),
Chunk, Size);
}
}
// Returns the actual usable size of a chunk. Since this requires loading the
// header, we will return it in the second parameter, as it can be required
// by the caller to perform additional processing.
uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
if (UNLIKELY(!ThreadInited))
initThread();
if (!Ptr)
return 0;
uptr ChunkBeg = reinterpret_cast<uptr>(Ptr);
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - ChunkHeaderSize);
Chunk->loadHeader(Header);
// Getting the usable size of a chunk only makes sense if it's allocated.
if (Header->State != ChunkAllocated) {
dieWithMessage("ERROR: attempted to size a non-allocated chunk at "
"address %p\n", Chunk);
}
uptr Size =
BackendAllocator.GetActuallyAllocatedSize(Chunk->AllocBeg(Header));
// UsableSize works as malloc_usable_size, which is also what (AFAIU)
// tcmalloc's MallocExtension::GetAllocatedSize aims at providing. This
// means we will return the size of the chunk from the user beginning to
// the end of the 'user' allocation, hence us subtracting the header size
// and the offset from the size.
if (Size == 0)
return Size;
return Size - ChunkHeaderSize - (Header->Offset << MinAlignmentLog);
}
// Helper function that doesn't care about the header.
uptr getUsableSize(const void *Ptr) {
UnpackedHeader Header;
return getUsableSize(Ptr, &Header);
}
// Reallocates a chunk. We can save on a new allocation if the new requested
// size still fits in the chunk.
void *reallocate(void *OldPtr, uptr NewSize) {
if (UNLIKELY(!ThreadInited))
initThread();
UnpackedHeader OldHeader;
uptr Size = getUsableSize(OldPtr, &OldHeader);
uptr ChunkBeg = reinterpret_cast<uptr>(OldPtr);
ScudoChunk *Chunk =
reinterpret_cast<ScudoChunk *>(ChunkBeg - ChunkHeaderSize);
if (OldHeader.AllocType != FromMalloc) {
dieWithMessage("ERROR: invalid chunk type when reallocating address %p\n",
Chunk);
}
UnpackedHeader NewHeader = OldHeader;
// The new size still fits in the current chunk.
if (NewSize <= Size) {
NewHeader.RequestedSize = NewSize;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
return OldPtr;
}
// Otherwise, we have to allocate a new chunk and copy the contents of the
// old one.
void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
if (NewPtr) {
uptr OldSize = OldHeader.RequestedSize;
memcpy(NewPtr, OldPtr, Min(NewSize, OldSize));
NewHeader.State = ChunkQuarantine;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
if (LIKELY(!ThreadTornDown)) {
AllocatorQuarantine.Put(&ThreadQuarantineCache,
QuarantineCallback(&Cache), Chunk, OldSize);
} else {
SpinMutexLock l(&FallbackMutex);
AllocatorQuarantine.Put(&FallbackQuarantineCache,
QuarantineCallback(&FallbackAllocatorCache),
Chunk, OldSize);
}
}
return NewPtr;
}
void *calloc(uptr NMemB, uptr Size) {
if (UNLIKELY(!ThreadInited))
initThread();
uptr Total = NMemB * Size;
if (Size != 0 && Total / Size != NMemB) // Overflow check
return BackendAllocator.ReturnNullOrDie();
void *Ptr = allocate(Total, MinAlignment, FromMalloc);
// If ZeroContents, the content of the chunk has already been zero'd out.
if (!ZeroContents && Ptr && BackendAllocator.FromPrimary(Ptr))
memset(Ptr, 0, getUsableSize(Ptr));
return Ptr;
}
void drainQuarantine() {
AllocatorQuarantine.Drain(&ThreadQuarantineCache,
QuarantineCallback(&Cache));
}
};
static Allocator Instance(LINKER_INITIALIZED);
static ScudoAllocator &getAllocator() {
return Instance.BackendAllocator;
}
void initAllocator(const AllocatorOptions &Options) {
Instance.init(Options);
}
void drainQuarantine() {
Instance.drainQuarantine();
}
void *scudoMalloc(uptr Size, AllocType Type) {
return Instance.allocate(Size, Allocator::MinAlignment, Type);
}
void scudoFree(void *Ptr, AllocType Type) {
Instance.deallocate(Ptr, 0, Type);
}
void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
Instance.deallocate(Ptr, Size, Type);
}
void *scudoRealloc(void *Ptr, uptr Size) {
if (!Ptr)
return Instance.allocate(Size, Allocator::MinAlignment, FromMalloc);
if (Size == 0) {
Instance.deallocate(Ptr, 0, FromMalloc);
return nullptr;
}
return Instance.reallocate(Ptr, Size);
}
void *scudoCalloc(uptr NMemB, uptr Size) {
return Instance.calloc(NMemB, Size);
}
void *scudoValloc(uptr Size) {
return Instance.allocate(Size, GetPageSizeCached(), FromMemalign);
}
void *scudoMemalign(uptr Alignment, uptr Size) {
return Instance.allocate(Size, Alignment, FromMemalign);
}
void *scudoPvalloc(uptr Size) {
uptr PageSize = GetPageSizeCached();
Size = RoundUpTo(Size, PageSize);
if (Size == 0) {
// pvalloc(0) should allocate one page.
Size = PageSize;
}
return Instance.allocate(Size, PageSize, FromMemalign);
}
int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
*MemPtr = Instance.allocate(Size, Alignment, FromMemalign);
return 0;
}
void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
// size must be a multiple of the alignment. To avoid a division, we first
// make sure that alignment is a power of 2.
CHECK(IsPowerOfTwo(Alignment));
CHECK_EQ((Size & (Alignment - 1)), 0);
return Instance.allocate(Size, Alignment, FromMalloc);
}
uptr scudoMallocUsableSize(void *Ptr) {
return Instance.getUsableSize(Ptr);
}
} // namespace __scudo
using namespace __scudo;
// MallocExtension helper functions
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
getAllocator().GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
getAllocator().GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() {
return 1;
}
uptr __sanitizer_get_unmapped_bytes() {
return 1;
}
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
return size;
}
int __sanitizer_get_ownership(const void *p) {
return Instance.getUsableSize(p) != 0;
}
uptr __sanitizer_get_allocated_size(const void *p) {
return Instance.getUsableSize(p);
}
|