| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 
 | //===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass.  Given some numbering of
// each the machine instructions (in this implemention depth-first order) an
// interval [i, j) is said to be a live interval for register v if there is no
// instruction with number j' > j such that v is live at j' and there is no
// instruction with number i' < i such that v is live at i'. In this
// implementation intervals can have holes, i.e. an interval might look like
// [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
#define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cmath>
namespace llvm {
extern cl::opt<bool> UseSegmentSetForPhysRegs;
  class BitVector;
  class BlockFrequency;
  class LiveRangeCalc;
  class LiveVariables;
  class MachineDominatorTree;
  class MachineLoopInfo;
  class TargetRegisterInfo;
  class MachineRegisterInfo;
  class TargetInstrInfo;
  class TargetRegisterClass;
  class VirtRegMap;
  class MachineBlockFrequencyInfo;
  class LiveIntervals : public MachineFunctionPass {
    MachineFunction* MF;
    MachineRegisterInfo* MRI;
    const TargetRegisterInfo* TRI;
    const TargetInstrInfo* TII;
    AliasAnalysis *AA;
    SlotIndexes* Indexes;
    MachineDominatorTree *DomTree;
    LiveRangeCalc *LRCalc;
    /// Special pool allocator for VNInfo's (LiveInterval val#).
    ///
    VNInfo::Allocator VNInfoAllocator;
    /// Live interval pointers for all the virtual registers.
    IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
    /// RegMaskSlots - Sorted list of instructions with register mask operands.
    /// Always use the 'r' slot, RegMasks are normal clobbers, not early
    /// clobbers.
    SmallVector<SlotIndex, 8> RegMaskSlots;
    /// RegMaskBits - This vector is parallel to RegMaskSlots, it holds a
    /// pointer to the corresponding register mask.  This pointer can be
    /// recomputed as:
    ///
    ///   MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
    ///   unsigned OpNum = findRegMaskOperand(MI);
    ///   RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
    ///
    /// This is kept in a separate vector partly because some standard
    /// libraries don't support lower_bound() with mixed objects, partly to
    /// improve locality when searching in RegMaskSlots.
    /// Also see the comment in LiveInterval::find().
    SmallVector<const uint32_t*, 8> RegMaskBits;
    /// For each basic block number, keep (begin, size) pairs indexing into the
    /// RegMaskSlots and RegMaskBits arrays.
    /// Note that basic block numbers may not be layout contiguous, that's why
    /// we can't just keep track of the first register mask in each basic
    /// block.
    SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
    /// Keeps a live range set for each register unit to track fixed physreg
    /// interference.
    SmallVector<LiveRange*, 0> RegUnitRanges;
  public:
    static char ID; // Pass identification, replacement for typeid
    LiveIntervals();
    ~LiveIntervals() override;
    // Calculate the spill weight to assign to a single instruction.
    static float getSpillWeight(bool isDef, bool isUse,
                                const MachineBlockFrequencyInfo *MBFI,
                                const MachineInstr &Instr);
    LiveInterval &getInterval(unsigned Reg) {
      if (hasInterval(Reg))
        return *VirtRegIntervals[Reg];
      else
        return createAndComputeVirtRegInterval(Reg);
    }
    const LiveInterval &getInterval(unsigned Reg) const {
      return const_cast<LiveIntervals*>(this)->getInterval(Reg);
    }
    bool hasInterval(unsigned Reg) const {
      return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
    }
    // Interval creation.
    LiveInterval &createEmptyInterval(unsigned Reg) {
      assert(!hasInterval(Reg) && "Interval already exists!");
      VirtRegIntervals.grow(Reg);
      VirtRegIntervals[Reg] = createInterval(Reg);
      return *VirtRegIntervals[Reg];
    }
    LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
      LiveInterval &LI = createEmptyInterval(Reg);
      computeVirtRegInterval(LI);
      return LI;
    }
    // Interval removal.
    void removeInterval(unsigned Reg) {
      delete VirtRegIntervals[Reg];
      VirtRegIntervals[Reg] = nullptr;
    }
    /// Given a register and an instruction, adds a live segment from that
    /// instruction to the end of its MBB.
    LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
                                                 MachineInstr &startInst);
    /// After removing some uses of a register, shrink its live range to just
    /// the remaining uses. This method does not compute reaching defs for new
    /// uses, and it doesn't remove dead defs.
    /// Dead PHIDef values are marked as unused. New dead machine instructions
    /// are added to the dead vector. Returns true if the interval may have been
    /// separated into multiple connected components.
    bool shrinkToUses(LiveInterval *li,
                      SmallVectorImpl<MachineInstr*> *dead = nullptr);
    /// Specialized version of
    /// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
    /// that works on a subregister live range and only looks at uses matching
    /// the lane mask of the subregister range.
    /// This may leave the subrange empty which needs to be cleaned up with
    /// LiveInterval::removeEmptySubranges() afterwards.
    void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
    /// extendToIndices - Extend the live range of LI to reach all points in
    /// Indices. The points in the Indices array must be jointly dominated by
    /// existing defs in LI. PHI-defs are added as needed to maintain SSA form.
    ///
    /// If a SlotIndex in Indices is the end index of a basic block, LI will be
    /// extended to be live out of the basic block.
    ///
    /// See also LiveRangeCalc::extend().
    void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices);
    /// If @p LR has a live value at @p Kill, prune its live range by removing
    /// any liveness reachable from Kill. Add live range end points to
    /// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
    /// value's live range.
    ///
    /// Calling pruneValue() and extendToIndices() can be used to reconstruct
    /// SSA form after adding defs to a virtual register.
    void pruneValue(LiveRange &LR, SlotIndex Kill,
                    SmallVectorImpl<SlotIndex> *EndPoints);
    SlotIndexes *getSlotIndexes() const {
      return Indexes;
    }
    AliasAnalysis *getAliasAnalysis() const {
      return AA;
    }
    /// isNotInMIMap - returns true if the specified machine instr has been
    /// removed or was never entered in the map.
    bool isNotInMIMap(const MachineInstr &Instr) const {
      return !Indexes->hasIndex(Instr);
    }
    /// Returns the base index of the given instruction.
    SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
      return Indexes->getInstructionIndex(Instr);
    }
    /// Returns the instruction associated with the given index.
    MachineInstr* getInstructionFromIndex(SlotIndex index) const {
      return Indexes->getInstructionFromIndex(index);
    }
    /// Return the first index in the given basic block.
    SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
      return Indexes->getMBBStartIdx(mbb);
    }
    /// Return the last index in the given basic block.
    SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
      return Indexes->getMBBEndIdx(mbb);
    }
    bool isLiveInToMBB(const LiveRange &LR,
                       const MachineBasicBlock *mbb) const {
      return LR.liveAt(getMBBStartIdx(mbb));
    }
    bool isLiveOutOfMBB(const LiveRange &LR,
                        const MachineBasicBlock *mbb) const {
      return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
    }
    MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
      return Indexes->getMBBFromIndex(index);
    }
    void insertMBBInMaps(MachineBasicBlock *MBB) {
      Indexes->insertMBBInMaps(MBB);
      assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
             "Blocks must be added in order.");
      RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
    }
    SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
      return Indexes->insertMachineInstrInMaps(MI);
    }
    void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
                                       MachineBasicBlock::iterator E) {
      for (MachineBasicBlock::iterator I = B; I != E; ++I)
        Indexes->insertMachineInstrInMaps(*I);
    }
    void RemoveMachineInstrFromMaps(MachineInstr &MI) {
      Indexes->removeMachineInstrFromMaps(MI);
    }
    void ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
      Indexes->replaceMachineInstrInMaps(MI, NewMI);
    }
    VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
    void getAnalysisUsage(AnalysisUsage &AU) const override;
    void releaseMemory() override;
    /// runOnMachineFunction - pass entry point
    bool runOnMachineFunction(MachineFunction&) override;
    /// print - Implement the dump method.
    void print(raw_ostream &O, const Module* = nullptr) const override;
    /// intervalIsInOneMBB - If LI is confined to a single basic block, return
    /// a pointer to that block.  If LI is live in to or out of any block,
    /// return NULL.
    MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
    /// Returns true if VNI is killed by any PHI-def values in LI.
    /// This may conservatively return true to avoid expensive computations.
    bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
    /// addKillFlags - Add kill flags to any instruction that kills a virtual
    /// register.
    void addKillFlags(const VirtRegMap*);
    /// handleMove - call this method to notify LiveIntervals that
    /// instruction 'mi' has been moved within a basic block. This will update
    /// the live intervals for all operands of mi. Moves between basic blocks
    /// are not supported.
    ///
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    void handleMove(MachineInstr &MI, bool UpdateFlags = false);
    /// moveIntoBundle - Update intervals for operands of MI so that they
    /// begin/end on the SlotIndex for BundleStart.
    ///
    /// \param UpdateFlags Update live intervals for nonallocatable physregs.
    ///
    /// Requires MI and BundleStart to have SlotIndexes, and assumes
    /// existing liveness is accurate. BundleStart should be the first
    /// instruction in the Bundle.
    void handleMoveIntoBundle(MachineInstr &MI, MachineInstr &BundleStart,
                              bool UpdateFlags = false);
    /// repairIntervalsInRange - Update live intervals for instructions in a
    /// range of iterators. It is intended for use after target hooks that may
    /// insert or remove instructions, and is only efficient for a small number
    /// of instructions.
    ///
    /// OrigRegs is a vector of registers that were originally used by the
    /// instructions in the range between the two iterators.
    ///
    /// Currently, the only only changes that are supported are simple removal
    /// and addition of uses.
    void repairIntervalsInRange(MachineBasicBlock *MBB,
                                MachineBasicBlock::iterator Begin,
                                MachineBasicBlock::iterator End,
                                ArrayRef<unsigned> OrigRegs);
    // Register mask functions.
    //
    // Machine instructions may use a register mask operand to indicate that a
    // large number of registers are clobbered by the instruction.  This is
    // typically used for calls.
    //
    // For compile time performance reasons, these clobbers are not recorded in
    // the live intervals for individual physical registers.  Instead,
    // LiveIntervalAnalysis maintains a sorted list of instructions with
    // register mask operands.
    /// getRegMaskSlots - Returns a sorted array of slot indices of all
    /// instructions with register mask operands.
    ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
    /// getRegMaskSlotsInBlock - Returns a sorted array of slot indices of all
    /// instructions with register mask operands in the basic block numbered
    /// MBBNum.
    ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
      return getRegMaskSlots().slice(P.first, P.second);
    }
    /// getRegMaskBits() - Returns an array of register mask pointers
    /// corresponding to getRegMaskSlots().
    ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
    /// getRegMaskBitsInBlock - Returns an array of mask pointers corresponding
    /// to getRegMaskSlotsInBlock(MBBNum).
    ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
      std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
      return getRegMaskBits().slice(P.first, P.second);
    }
    /// checkRegMaskInterference - Test if LI is live across any register mask
    /// instructions, and compute a bit mask of physical registers that are not
    /// clobbered by any of them.
    ///
    /// Returns false if LI doesn't cross any register mask instructions. In
    /// that case, the bit vector is not filled in.
    bool checkRegMaskInterference(LiveInterval &LI,
                                  BitVector &UsableRegs);
    // Register unit functions.
    //
    // Fixed interference occurs when MachineInstrs use physregs directly
    // instead of virtual registers. This typically happens when passing
    // arguments to a function call, or when instructions require operands in
    // fixed registers.
    //
    // Each physreg has one or more register units, see MCRegisterInfo. We
    // track liveness per register unit to handle aliasing registers more
    // efficiently.
    /// getRegUnit - Return the live range for Unit.
    /// It will be computed if it doesn't exist.
    LiveRange &getRegUnit(unsigned Unit) {
      LiveRange *LR = RegUnitRanges[Unit];
      if (!LR) {
        // Compute missing ranges on demand.
        // Use segment set to speed-up initial computation of the live range.
        RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
        computeRegUnitRange(*LR, Unit);
      }
      return *LR;
    }
    /// getCachedRegUnit - Return the live range for Unit if it has already
    /// been computed, or NULL if it hasn't been computed yet.
    LiveRange *getCachedRegUnit(unsigned Unit) {
      return RegUnitRanges[Unit];
    }
    const LiveRange *getCachedRegUnit(unsigned Unit) const {
      return RegUnitRanges[Unit];
    }
    /// Remove value numbers and related live segments starting at position
    /// @p Pos that are part of any liverange of physical register @p Reg or one
    /// of its subregisters.
    void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
    /// Remove value number and related live segments of @p LI and its subranges
    /// that start at position @p Pos.
    void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
    /// Split separate components in LiveInterval \p LI into separate intervals.
    void splitSeparateComponents(LiveInterval &LI,
                                 SmallVectorImpl<LiveInterval*> &SplitLIs);
    /// For live interval \p LI with correct SubRanges construct matching
    /// information for the main live range. Expects the main live range to not
    /// have any segments or value numbers.
    void constructMainRangeFromSubranges(LiveInterval &LI);
  private:
    /// Compute live intervals for all virtual registers.
    void computeVirtRegs();
    /// Compute RegMaskSlots and RegMaskBits.
    void computeRegMasks();
    /// Walk the values in @p LI and check for dead values:
    /// - Dead PHIDef values are marked as unused.
    /// - Dead operands are marked as such.
    /// - Completely dead machine instructions are added to the @p dead vector
    ///   if it is not nullptr.
    /// Returns true if any PHI value numbers have been removed which may
    /// have separated the interval into multiple connected components.
    bool computeDeadValues(LiveInterval &LI,
                           SmallVectorImpl<MachineInstr*> *dead);
    static LiveInterval* createInterval(unsigned Reg);
    void printInstrs(raw_ostream &O) const;
    void dumpInstrs() const;
    void computeLiveInRegUnits();
    void computeRegUnitRange(LiveRange&, unsigned Unit);
    void computeVirtRegInterval(LiveInterval&);
    /// Helper function for repairIntervalsInRange(), walks backwards and
    /// creates/modifies live segments in @p LR to match the operands found.
    /// Only full operands or operands with subregisters matching @p LaneMask
    /// are considered.
    void repairOldRegInRange(MachineBasicBlock::iterator Begin,
                             MachineBasicBlock::iterator End,
                             const SlotIndex endIdx, LiveRange &LR,
                             unsigned Reg, LaneBitmask LaneMask = ~0u);
    class HMEditor;
  };
} // End llvm namespace
#endif
 |