1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
//===- Transforms/Instrumentation.h - Instrumentation passes ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines constructor functions for instrumentation passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_INSTRUMENTATION_H
#define LLVM_TRANSFORMS_INSTRUMENTATION_H
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/BasicBlock.h"
#include <vector>
#if defined(__GNUC__) && defined(__linux__) && !defined(ANDROID)
inline void *getDFSanArgTLSPtrForJIT() {
extern __thread __attribute__((tls_model("initial-exec")))
void *__dfsan_arg_tls;
return (void *)&__dfsan_arg_tls;
}
inline void *getDFSanRetValTLSPtrForJIT() {
extern __thread __attribute__((tls_model("initial-exec")))
void *__dfsan_retval_tls;
return (void *)&__dfsan_retval_tls;
}
#endif
namespace llvm {
class TargetMachine;
/// Instrumentation passes often insert conditional checks into entry blocks.
/// Call this function before splitting the entry block to move instructions
/// that must remain in the entry block up before the split point. Static
/// allocas and llvm.localescape calls, for example, must remain in the entry
/// block.
BasicBlock::iterator PrepareToSplitEntryBlock(BasicBlock &BB,
BasicBlock::iterator IP);
class ModulePass;
class FunctionPass;
// Insert GCOV profiling instrumentation
struct GCOVOptions {
static GCOVOptions getDefault();
// Specify whether to emit .gcno files.
bool EmitNotes;
// Specify whether to modify the program to emit .gcda files when run.
bool EmitData;
// A four-byte version string. The meaning of a version string is described in
// gcc's gcov-io.h
char Version[4];
// Emit a "cfg checksum" that follows the "line number checksum" of a
// function. This affects both .gcno and .gcda files.
bool UseCfgChecksum;
// Add the 'noredzone' attribute to added runtime library calls.
bool NoRedZone;
// Emit the name of the function in the .gcda files. This is redundant, as
// the function identifier can be used to find the name from the .gcno file.
bool FunctionNamesInData;
// Emit the exit block immediately after the start block, rather than after
// all of the function body's blocks.
bool ExitBlockBeforeBody;
};
ModulePass *createGCOVProfilerPass(const GCOVOptions &Options =
GCOVOptions::getDefault());
// PGO Instrumention
ModulePass *createPGOInstrumentationGenLegacyPass();
ModulePass *
createPGOInstrumentationUseLegacyPass(StringRef Filename = StringRef(""));
ModulePass *createPGOIndirectCallPromotionLegacyPass(bool InLTO = false);
/// Options for the frontend instrumentation based profiling pass.
struct InstrProfOptions {
InstrProfOptions() : NoRedZone(false) {}
// Add the 'noredzone' attribute to added runtime library calls.
bool NoRedZone;
// Name of the profile file to use as output
std::string InstrProfileOutput;
};
/// Insert frontend instrumentation based profiling.
ModulePass *createInstrProfilingLegacyPass(
const InstrProfOptions &Options = InstrProfOptions());
// Insert AddressSanitizer (address sanity checking) instrumentation
FunctionPass *createAddressSanitizerFunctionPass(bool CompileKernel = false,
bool Recover = false,
bool UseAfterScope = false);
ModulePass *createAddressSanitizerModulePass(bool CompileKernel = false,
bool Recover = false);
// Insert MemorySanitizer instrumentation (detection of uninitialized reads)
FunctionPass *createMemorySanitizerPass(int TrackOrigins = 0);
// Insert ThreadSanitizer (race detection) instrumentation
FunctionPass *createThreadSanitizerPass();
// Insert DataFlowSanitizer (dynamic data flow analysis) instrumentation
ModulePass *createDataFlowSanitizerPass(
const std::vector<std::string> &ABIListFiles = std::vector<std::string>(),
void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr);
// Options for EfficiencySanitizer sub-tools.
struct EfficiencySanitizerOptions {
EfficiencySanitizerOptions() : ToolType(ESAN_None) {}
enum Type {
ESAN_None = 0,
ESAN_CacheFrag,
ESAN_WorkingSet,
} ToolType;
};
// Insert EfficiencySanitizer instrumentation.
ModulePass *createEfficiencySanitizerPass(
const EfficiencySanitizerOptions &Options = EfficiencySanitizerOptions());
// Options for sanitizer coverage instrumentation.
struct SanitizerCoverageOptions {
SanitizerCoverageOptions()
: CoverageType(SCK_None), IndirectCalls(false), TraceBB(false),
TraceCmp(false), Use8bitCounters(false), TracePC(false) {}
enum Type {
SCK_None = 0,
SCK_Function,
SCK_BB,
SCK_Edge
} CoverageType;
bool IndirectCalls;
bool TraceBB;
bool TraceCmp;
bool Use8bitCounters;
bool TracePC;
};
// Insert SanitizerCoverage instrumentation.
ModulePass *createSanitizerCoverageModulePass(
const SanitizerCoverageOptions &Options = SanitizerCoverageOptions());
#if defined(__GNUC__) && defined(__linux__) && !defined(ANDROID)
inline ModulePass *createDataFlowSanitizerPassForJIT(
const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) {
return createDataFlowSanitizerPass(ABIListFiles, getDFSanArgTLSPtrForJIT,
getDFSanRetValTLSPtrForJIT);
}
#endif
// BoundsChecking - This pass instruments the code to perform run-time bounds
// checking on loads, stores, and other memory intrinsics.
FunctionPass *createBoundsCheckingPass();
/// \brief Calculate what to divide by to scale counts.
///
/// Given the maximum count, calculate a divisor that will scale all the
/// weights to strictly less than UINT32_MAX.
static inline uint64_t calculateCountScale(uint64_t MaxCount) {
return MaxCount < UINT32_MAX ? 1 : MaxCount / UINT32_MAX + 1;
}
/// \brief Scale an individual branch count.
///
/// Scale a 64-bit weight down to 32-bits using \c Scale.
///
static inline uint32_t scaleBranchCount(uint64_t Count, uint64_t Scale) {
uint64_t Scaled = Count / Scale;
assert(Scaled <= UINT32_MAX && "overflow 32-bits");
return Scaled;
}
} // End llvm namespace
#endif
|