1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
|
//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file
// \brief This file exposes an interface to building/using memory SSA to
// walk memory instructions using a use/def graph.
//
// Memory SSA class builds an SSA form that links together memory access
// instructions such as loads, stores, atomics, and calls. Additionally, it does
// a trivial form of "heap versioning" Every time the memory state changes in
// the program, we generate a new heap version. It generates MemoryDef/Uses/Phis
// that are overlayed on top of the existing instructions.
//
// As a trivial example,
// define i32 @main() #0 {
// entry:
// %call = call noalias i8* @_Znwm(i64 4) #2
// %0 = bitcast i8* %call to i32*
// %call1 = call noalias i8* @_Znwm(i64 4) #2
// %1 = bitcast i8* %call1 to i32*
// store i32 5, i32* %0, align 4
// store i32 7, i32* %1, align 4
// %2 = load i32* %0, align 4
// %3 = load i32* %1, align 4
// %add = add nsw i32 %2, %3
// ret i32 %add
// }
//
// Will become
// define i32 @main() #0 {
// entry:
// ; 1 = MemoryDef(0)
// %call = call noalias i8* @_Znwm(i64 4) #3
// %2 = bitcast i8* %call to i32*
// ; 2 = MemoryDef(1)
// %call1 = call noalias i8* @_Znwm(i64 4) #3
// %4 = bitcast i8* %call1 to i32*
// ; 3 = MemoryDef(2)
// store i32 5, i32* %2, align 4
// ; 4 = MemoryDef(3)
// store i32 7, i32* %4, align 4
// ; MemoryUse(3)
// %7 = load i32* %2, align 4
// ; MemoryUse(4)
// %8 = load i32* %4, align 4
// %add = add nsw i32 %7, %8
// ret i32 %add
// }
//
// Given this form, all the stores that could ever effect the load at %8 can be
// gotten by using the MemoryUse associated with it, and walking from use to def
// until you hit the top of the function.
//
// Each def also has a list of users associated with it, so you can walk from
// both def to users, and users to defs. Note that we disambiguate MemoryUses,
// but not the RHS of MemoryDefs. You can see this above at %7, which would
// otherwise be a MemoryUse(4). Being disambiguated means that for a given
// store, all the MemoryUses on its use lists are may-aliases of that store (but
// the MemoryDefs on its use list may not be).
//
// MemoryDefs are not disambiguated because it would require multiple reaching
// definitions, which would require multiple phis, and multiple memoryaccesses
// per instruction.
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
#define LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/PHITransAddr.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>
namespace llvm {
class DominatorTree;
class Function;
class Instruction;
class MemoryAccess;
class LLVMContext;
class raw_ostream;
template <class T> class memoryaccess_def_iterator_base;
using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
using const_memoryaccess_def_iterator =
memoryaccess_def_iterator_base<const MemoryAccess>;
// \brief The base for all memory accesses. All memory accesses in a block are
// linked together using an intrusive list.
class MemoryAccess : public User, public ilist_node<MemoryAccess> {
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t) = delete;
public:
// Methods for support type inquiry through isa, cast, and
// dyn_cast
static inline bool classof(const MemoryAccess *) { return true; }
static inline bool classof(const Value *V) {
unsigned ID = V->getValueID();
return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
}
~MemoryAccess() override;
BasicBlock *getBlock() const { return Block; }
virtual void print(raw_ostream &OS) const = 0;
virtual void dump() const;
/// \brief The user iterators for a memory access
typedef user_iterator iterator;
typedef const_user_iterator const_iterator;
/// \brief This iterator walks over all of the defs in a given
/// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
/// MemoryUse/MemoryDef, this walks the defining access.
memoryaccess_def_iterator defs_begin();
const_memoryaccess_def_iterator defs_begin() const;
memoryaccess_def_iterator defs_end();
const_memoryaccess_def_iterator defs_end() const;
protected:
friend class MemorySSA;
friend class MemoryUseOrDef;
friend class MemoryUse;
friend class MemoryDef;
friend class MemoryPhi;
/// \brief Used internally to give IDs to MemoryAccesses for printing
virtual unsigned getID() const = 0;
MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB,
unsigned NumOperands)
: User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {}
private:
MemoryAccess(const MemoryAccess &);
void operator=(const MemoryAccess &);
BasicBlock *Block;
};
template <>
struct ilist_traits<MemoryAccess> : public ilist_default_traits<MemoryAccess> {
/// See details of the instruction class for why this trick works
// FIXME: This downcast is UB. See llvm.org/PR26753.
LLVM_NO_SANITIZE("object-size")
MemoryAccess *createSentinel() const {
return static_cast<MemoryAccess *>(&Sentinel);
}
static void destroySentinel(MemoryAccess *) {}
MemoryAccess *provideInitialHead() const { return createSentinel(); }
MemoryAccess *ensureHead(MemoryAccess *) const { return createSentinel(); }
static void noteHead(MemoryAccess *, MemoryAccess *) {}
private:
mutable ilist_half_node<MemoryAccess> Sentinel;
};
inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
MA.print(OS);
return OS;
}
/// \brief Class that has the common methods + fields of memory uses/defs. It's
/// a little awkward to have, but there are many cases where we want either a
/// use or def, and there are many cases where uses are needed (defs aren't
/// acceptable), and vice-versa.
///
/// This class should never be instantiated directly; make a MemoryUse or
/// MemoryDef instead.
class MemoryUseOrDef : public MemoryAccess {
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t) = delete;
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
/// \brief Get the instruction that this MemoryUse represents.
Instruction *getMemoryInst() const { return MemoryInst; }
/// \brief Get the access that produces the memory state used by this Use.
MemoryAccess *getDefiningAccess() const { return getOperand(0); }
static inline bool classof(const MemoryUseOrDef *) { return true; }
static inline bool classof(const Value *MA) {
return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
}
protected:
friend class MemorySSA;
MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
Instruction *MI, BasicBlock *BB)
: MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
setDefiningAccess(DMA);
}
void setDefiningAccess(MemoryAccess *DMA) { setOperand(0, DMA); }
private:
Instruction *MemoryInst;
};
template <>
struct OperandTraits<MemoryUseOrDef>
: public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
/// \brief Represents read-only accesses to memory
///
/// In particular, the set of Instructions that will be represented by
/// MemoryUse's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Ref".
class MemoryUse final : public MemoryUseOrDef {
void *operator new(size_t, unsigned) = delete;
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
// allocate space for exactly one operand
void *operator new(size_t s) { return User::operator new(s, 1); }
MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
: MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB) {}
static inline bool classof(const MemoryUse *) { return true; }
static inline bool classof(const Value *MA) {
return MA->getValueID() == MemoryUseVal;
}
void print(raw_ostream &OS) const override;
protected:
friend class MemorySSA;
unsigned getID() const override {
llvm_unreachable("MemoryUses do not have IDs");
}
};
template <>
struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
/// \brief Represents a read-write access to memory, whether it is a must-alias,
/// or a may-alias.
///
/// In particular, the set of Instructions that will be represented by
/// MemoryDef's is exactly the set of Instructions for which
/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
/// Note that, in order to provide def-def chains, all defs also have a use
/// associated with them. This use points to the nearest reaching
/// MemoryDef/MemoryPhi.
class MemoryDef final : public MemoryUseOrDef {
void *operator new(size_t, unsigned) = delete;
public:
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
// allocate space for exactly one operand
void *operator new(size_t s) { return User::operator new(s, 1); }
MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
unsigned Ver)
: MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver) {}
static inline bool classof(const MemoryDef *) { return true; }
static inline bool classof(const Value *MA) {
return MA->getValueID() == MemoryDefVal;
}
void print(raw_ostream &OS) const override;
protected:
friend class MemorySSA;
// For debugging only. This gets used to give memory accesses pretty numbers
// when printing them out
unsigned getID() const override { return ID; }
private:
const unsigned ID;
};
template <>
struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
/// \brief Represents phi nodes for memory accesses.
///
/// These have the same semantic as regular phi nodes, with the exception that
/// only one phi will ever exist in a given basic block.
/// Guaranteeing one phi per block means guaranteeing there is only ever one
/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
/// a MemoryPhi's operands.
/// That is, given
/// if (a) {
/// store %a
/// store %b
/// }
/// it *must* be transformed into
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// 2 = MemoryDef(1)
/// store %b
/// }
/// and *not*
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// 2 = MemoryDef(liveOnEntry)
/// store %b
/// }
/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
/// end of the branch, and if there are not two phi nodes, one will be
/// disconnected completely from the SSA graph below that point.
/// Because MemoryUse's do not generate new definitions, they do not have this
/// issue.
class MemoryPhi final : public MemoryAccess {
void *operator new(size_t, unsigned) = delete;
// allocate space for exactly zero operands
void *operator new(size_t s) { return User::operator new(s); }
public:
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
: MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) {
allocHungoffUses(ReservedSpace);
}
// Block iterator interface. This provides access to the list of incoming
// basic blocks, which parallels the list of incoming values.
typedef BasicBlock **block_iterator;
typedef BasicBlock *const *const_block_iterator;
block_iterator block_begin() {
auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
return reinterpret_cast<block_iterator>(Ref + 1);
}
const_block_iterator block_begin() const {
const auto *Ref =
reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
return reinterpret_cast<const_block_iterator>(Ref + 1);
}
block_iterator block_end() { return block_begin() + getNumOperands(); }
const_block_iterator block_end() const {
return block_begin() + getNumOperands();
}
op_range incoming_values() { return operands(); }
const_op_range incoming_values() const { return operands(); }
/// \brief Return the number of incoming edges
unsigned getNumIncomingValues() const { return getNumOperands(); }
/// \brief Return incoming value number x
MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
void setIncomingValue(unsigned I, MemoryAccess *V) {
assert(V && "PHI node got a null value!");
setOperand(I, V);
}
static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
/// \brief Return incoming basic block number @p i.
BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
/// \brief Return incoming basic block corresponding
/// to an operand of the PHI.
BasicBlock *getIncomingBlock(const Use &U) const {
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
return getIncomingBlock(unsigned(&U - op_begin()));
}
/// \brief Return incoming basic block corresponding
/// to value use iterator.
BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
return getIncomingBlock(I.getUse());
}
void setIncomingBlock(unsigned I, BasicBlock *BB) {
assert(BB && "PHI node got a null basic block!");
block_begin()[I] = BB;
}
/// \brief Add an incoming value to the end of the PHI list
void addIncoming(MemoryAccess *V, BasicBlock *BB) {
if (getNumOperands() == ReservedSpace)
growOperands(); // Get more space!
// Initialize some new operands.
setNumHungOffUseOperands(getNumOperands() + 1);
setIncomingValue(getNumOperands() - 1, V);
setIncomingBlock(getNumOperands() - 1, BB);
}
/// \brief Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
int getBasicBlockIndex(const BasicBlock *BB) const {
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
if (block_begin()[I] == BB)
return I;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument!");
return getIncomingValue(Idx);
}
static inline bool classof(const MemoryPhi *) { return true; }
static inline bool classof(const Value *V) {
return V->getValueID() == MemoryPhiVal;
}
void print(raw_ostream &OS) const override;
protected:
friend class MemorySSA;
/// \brief this is more complicated than the generic
/// User::allocHungoffUses, because we have to allocate Uses for the incoming
/// values and pointers to the incoming blocks, all in one allocation.
void allocHungoffUses(unsigned N) {
User::allocHungoffUses(N, /* IsPhi */ true);
}
/// For debugging only. This gets used to give memory accesses pretty numbers
/// when printing them out
unsigned getID() const final { return ID; }
private:
// For debugging only
const unsigned ID;
unsigned ReservedSpace;
/// \brief This grows the operand list in response to a push_back style of
/// operation. This grows the number of ops by 1.5 times.
void growOperands() {
unsigned E = getNumOperands();
// 2 op PHI nodes are VERY common, so reserve at least enough for that.
ReservedSpace = std::max(E + E / 2, 2u);
growHungoffUses(ReservedSpace, /* IsPhi */ true);
}
};
template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
class MemorySSAWalker;
/// \brief Encapsulates MemorySSA, including all data associated with memory
/// accesses.
class MemorySSA {
public:
MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
MemorySSA(MemorySSA &&);
~MemorySSA();
MemorySSAWalker *getWalker();
/// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
/// access associated with it. If passed a basic block gets the memory phi
/// node that exists for that block, if there is one. Otherwise, this will get
/// a MemoryUseOrDef.
MemoryAccess *getMemoryAccess(const Value *) const;
MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
void dump() const;
void print(raw_ostream &) const;
/// \brief Return true if \p MA represents the live on entry value
///
/// Loads and stores from pointer arguments and other global values may be
/// defined by memory operations that do not occur in the current function, so
/// they may be live on entry to the function. MemorySSA represents such
/// memory state by the live on entry definition, which is guaranteed to occur
/// before any other memory access in the function.
inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
return MA == LiveOnEntryDef.get();
}
inline MemoryAccess *getLiveOnEntryDef() const {
return LiveOnEntryDef.get();
}
using AccessList = iplist<MemoryAccess>;
/// \brief Return the list of MemoryAccess's for a given basic block.
///
/// This list is not modifiable by the user.
const AccessList *getBlockAccesses(const BasicBlock *BB) const {
auto It = PerBlockAccesses.find(BB);
return It == PerBlockAccesses.end() ? nullptr : It->second.get();
}
/// \brief Create an empty MemoryPhi in MemorySSA
MemoryPhi *createMemoryPhi(BasicBlock *BB);
enum InsertionPlace { Beginning, End };
/// \brief Create a MemoryAccess in MemorySSA at a specified point in a block,
/// with a specified clobbering definition.
///
/// Returns the new MemoryAccess.
/// This should be called when a memory instruction is created that is being
/// used to replace an existing memory instruction. It will *not* create PHI
/// nodes, or verify the clobbering definition. The insertion place is used
/// solely to determine where in the memoryssa access lists the instruction
/// will be placed. The caller is expected to keep ordering the same as
/// instructions.
/// It will return the new MemoryAccess.
MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition,
const BasicBlock *BB,
InsertionPlace Point);
/// \brief Create a MemoryAccess in MemorySSA before or after an existing
/// MemoryAccess.
///
/// Returns the new MemoryAccess.
/// This should be called when a memory instruction is created that is being
/// used to replace an existing memory instruction. It will *not* create PHI
/// nodes, or verify the clobbering definition. The clobbering definition
/// must be non-null.
MemoryAccess *createMemoryAccessBefore(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt);
MemoryAccess *createMemoryAccessAfter(Instruction *I,
MemoryAccess *Definition,
MemoryAccess *InsertPt);
/// \brief Remove a MemoryAccess from MemorySSA, including updating all
/// definitions and uses.
/// This should be called when a memory instruction that has a MemoryAccess
/// associated with it is erased from the program. For example, if a store or
/// load is simply erased (not replaced), removeMemoryAccess should be called
/// on the MemoryAccess for that store/load.
void removeMemoryAccess(MemoryAccess *);
/// \brief Given two memory accesses in the same basic block, determine
/// whether MemoryAccess \p A dominates MemoryAccess \p B.
bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
/// \brief Verify that MemorySSA is self consistent (IE definitions dominate
/// all uses, uses appear in the right places). This is used by unit tests.
void verifyMemorySSA() const;
protected:
// Used by Memory SSA annotater, dumpers, and wrapper pass
friend class MemorySSAAnnotatedWriter;
friend class MemorySSAPrinterLegacyPass;
void verifyDefUses(Function &F) const;
void verifyDomination(Function &F) const;
void verifyOrdering(Function &F) const;
private:
class CachingWalker;
void buildMemorySSA();
void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
void
determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
void computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels);
void markUnreachableAsLiveOnEntry(BasicBlock *BB);
bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
MemoryUseOrDef *createNewAccess(Instruction *);
MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
void removeFromLookups(MemoryAccess *);
MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *);
void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
SmallPtrSet<BasicBlock *, 16> &Visited);
AccessList *getOrCreateAccessList(const BasicBlock *);
AliasAnalysis *AA;
DominatorTree *DT;
Function &F;
// Memory SSA mappings
DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
AccessMap PerBlockAccesses;
std::unique_ptr<MemoryAccess> LiveOnEntryDef;
// Memory SSA building info
std::unique_ptr<CachingWalker> Walker;
unsigned NextID;
};
// This pass does eager building and then printing of MemorySSA. It is used by
// the tests to be able to build, dump, and verify Memory SSA.
class MemorySSAPrinterLegacyPass : public FunctionPass {
public:
MemorySSAPrinterLegacyPass();
static char ID;
bool runOnFunction(Function &) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
/// An analysis that produces \c MemorySSA for a function.
///
class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
friend AnalysisInfoMixin<MemorySSAAnalysis>;
static char PassID;
public:
typedef MemorySSA Result;
MemorySSA run(Function &F, AnalysisManager<Function> &AM);
};
/// \brief Printer pass for \c MemorySSA.
class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
raw_ostream &OS;
public:
explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};
/// \brief Verifier pass for \c MemorySSA.
struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
PreservedAnalyses run(Function &F, AnalysisManager<Function> &AM);
};
/// \brief Legacy analysis pass which computes \c MemorySSA.
class MemorySSAWrapperPass : public FunctionPass {
public:
MemorySSAWrapperPass();
static char ID;
bool runOnFunction(Function &) override;
void releaseMemory() override;
MemorySSA &getMSSA() { return *MSSA; }
const MemorySSA &getMSSA() const { return *MSSA; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
void verifyAnalysis() const override;
void print(raw_ostream &OS, const Module *M = nullptr) const override;
private:
std::unique_ptr<MemorySSA> MSSA;
};
/// \brief This is the generic walker interface for walkers of MemorySSA.
/// Walkers are used to be able to further disambiguate the def-use chains
/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
/// you.
/// In particular, while the def-use chains provide basic information, and are
/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
/// information. In particular, they may want to use SCEV info to further
/// disambiguate memory accesses, or they may want the nearest dominating
/// may-aliasing MemoryDef for a call or a store. This API enables a
/// standardized interface to getting and using that info.
class MemorySSAWalker {
public:
MemorySSAWalker(MemorySSA *);
virtual ~MemorySSAWalker() {}
using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
/// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
/// will give you the nearest dominating MemoryAccess that Mod's the location
/// the instruction accesses (by skipping any def which AA can prove does not
/// alias the location(s) accessed by the instruction given).
///
/// Note that this will return a single access, and it must dominate the
/// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
/// this will return the MemoryPhi, not the operand. This means that
/// given:
/// if (a) {
/// 1 = MemoryDef(liveOnEntry)
/// store %a
/// } else {
/// 2 = MemoryDef(liveOnEntry)
/// store %b
/// }
/// 3 = MemoryPhi(2, 1)
/// MemoryUse(3)
/// load %a
///
/// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
/// in the if (a) branch.
virtual MemoryAccess *getClobberingMemoryAccess(const Instruction *) = 0;
/// \brief Given a potentially clobbering memory access and a new location,
/// calling this will give you the nearest dominating clobbering MemoryAccess
/// (by skipping non-aliasing def links).
///
/// This version of the function is mainly used to disambiguate phi translated
/// pointers, where the value of a pointer may have changed from the initial
/// memory access. Note that this expects to be handed either a MemoryUse,
/// or an already potentially clobbering access. Unlike the above API, if
/// given a MemoryDef that clobbers the pointer as the starting access, it
/// will return that MemoryDef, whereas the above would return the clobber
/// starting from the use side of the memory def.
virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
MemoryLocation &) = 0;
/// \brief Given a memory access, invalidate anything this walker knows about
/// that access.
/// This API is used by walkers that store information to perform basic cache
/// invalidation. This will be called by MemorySSA at appropriate times for
/// the walker it uses or returns.
virtual void invalidateInfo(MemoryAccess *) {}
protected:
friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
// constructor.
MemorySSA *MSSA;
};
/// \brief A MemorySSAWalker that does no alias queries, or anything else. It
/// simply returns the links as they were constructed by the builder.
class DoNothingMemorySSAWalker final : public MemorySSAWalker {
public:
MemoryAccess *getClobberingMemoryAccess(const Instruction *) override;
MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
MemoryLocation &) override;
};
using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
/// \brief Iterator base class used to implement const and non-const iterators
/// over the defining accesses of a MemoryAccess.
template <class T>
class memoryaccess_def_iterator_base
: public iterator_facade_base<memoryaccess_def_iterator_base<T>,
std::forward_iterator_tag, T, ptrdiff_t, T *,
T *> {
using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
public:
memoryaccess_def_iterator_base(T *Start) : Access(Start), ArgNo(0) {}
memoryaccess_def_iterator_base() : Access(nullptr), ArgNo(0) {}
bool operator==(const memoryaccess_def_iterator_base &Other) const {
return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
}
// This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
// block from the operand in constant time (In a PHINode, the uselist has
// both, so it's just subtraction). We provide it as part of the
// iterator to avoid callers having to linear walk to get the block.
// If the operation becomes constant time on MemoryPHI's, this bit of
// abstraction breaking should be removed.
BasicBlock *getPhiArgBlock() const {
MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
assert(MP && "Tried to get phi arg block when not iterating over a PHI");
return MP->getIncomingBlock(ArgNo);
}
typename BaseT::iterator::pointer operator*() const {
assert(Access && "Tried to access past the end of our iterator");
// Go to the first argument for phis, and the defining access for everything
// else.
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
return MP->getIncomingValue(ArgNo);
return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
}
using BaseT::operator++;
memoryaccess_def_iterator &operator++() {
assert(Access && "Hit end of iterator");
if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
if (++ArgNo >= MP->getNumIncomingValues()) {
ArgNo = 0;
Access = nullptr;
}
} else {
Access = nullptr;
}
return *this;
}
private:
T *Access;
unsigned ArgNo;
};
inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
return memoryaccess_def_iterator(this);
}
inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
return const_memoryaccess_def_iterator(this);
}
inline memoryaccess_def_iterator MemoryAccess::defs_end() {
return memoryaccess_def_iterator();
}
inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
return const_memoryaccess_def_iterator();
}
/// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
/// and uses in the inverse case.
template <> struct GraphTraits<MemoryAccess *> {
using NodeType = MemoryAccess;
using ChildIteratorType = memoryaccess_def_iterator;
static NodeType *getEntryNode(NodeType *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->defs_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->defs_end();
}
};
template <> struct GraphTraits<Inverse<MemoryAccess *>> {
using NodeType = MemoryAccess;
using ChildIteratorType = MemoryAccess::iterator;
static NodeType *getEntryNode(NodeType *N) { return N; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->user_begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->user_end();
}
};
/// \brief Provide an iterator that walks defs, giving both the memory access,
/// and the current pointer location, updating the pointer location as it
/// changes due to phi node translation.
///
/// This iterator, while somewhat specialized, is what most clients actually
/// want when walking upwards through MemorySSA def chains. It takes a pair of
/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
/// memory location through phi nodes for the user.
class upward_defs_iterator
: public iterator_facade_base<upward_defs_iterator,
std::forward_iterator_tag,
const MemoryAccessPair> {
using BaseT = upward_defs_iterator::iterator_facade_base;
public:
upward_defs_iterator(const MemoryAccessPair &Info)
: DefIterator(Info.first), Location(Info.second),
OriginalAccess(Info.first) {
CurrentPair.first = nullptr;
WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
fillInCurrentPair();
}
upward_defs_iterator()
: DefIterator(), Location(), OriginalAccess(), WalkingPhi(false) {
CurrentPair.first = nullptr;
}
bool operator==(const upward_defs_iterator &Other) const {
return DefIterator == Other.DefIterator;
}
BaseT::iterator::reference operator*() const {
assert(DefIterator != OriginalAccess->defs_end() &&
"Tried to access past the end of our iterator");
return CurrentPair;
}
using BaseT::operator++;
upward_defs_iterator &operator++() {
assert(DefIterator != OriginalAccess->defs_end() &&
"Tried to access past the end of the iterator");
++DefIterator;
if (DefIterator != OriginalAccess->defs_end())
fillInCurrentPair();
return *this;
}
BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
private:
void fillInCurrentPair() {
CurrentPair.first = *DefIterator;
if (WalkingPhi && Location.Ptr) {
PHITransAddr Translator(
const_cast<Value *>(Location.Ptr),
OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
DefIterator.getPhiArgBlock(), nullptr,
false))
if (Translator.getAddr() != Location.Ptr) {
CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
return;
}
}
CurrentPair.second = Location;
}
MemoryAccessPair CurrentPair;
memoryaccess_def_iterator DefIterator;
MemoryLocation Location;
MemoryAccess *OriginalAccess;
bool WalkingPhi;
};
inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
return upward_defs_iterator(Pair);
}
inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_MEMORYSSA_H
|