1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
|
//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#endif
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
using namespace llvm;
// -amdgpu-fast-fdiv - Command line option to enable faster 2.5 ulp fdiv.
static cl::opt<bool> EnableAMDGPUFastFDIV(
"amdgpu-fast-fdiv",
cl::desc("Enable faster 2.5 ulp fdiv"),
cl::init(false));
static unsigned findFirstFreeSGPR(CCState &CCInfo) {
unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
return AMDGPU::SGPR0 + Reg;
}
}
llvm_unreachable("Cannot allocate sgpr");
}
SITargetLowering::SITargetLowering(const TargetMachine &TM,
const SISubtarget &STI)
: AMDGPUTargetLowering(TM, STI) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties(STI.getRegisterInfo());
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Promote);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch (Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
case ISD::SCALAR_TO_VECTOR:
break;
case ISD::CONCAT_VECTORS:
setOperationAction(Op, VT, Custom);
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
// Most operations are naturally 32-bit vector operations. We only support
// load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
}
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
// BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
// and output demarshalling
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
// We can't return success/failure, only the old value,
// let LLVM add the comparison
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
if (getSubtarget()->hasFlatAddressSpace()) {
setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
}
setOperationAction(ISD::BSWAP, MVT::i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
// On SI this is s_memtime and s_memrealtime on VI.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
setOperationAction(ISD::TRAP, MVT::Other, Custom);
setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f32, Custom);
setOperationAction(ISD::FDIV, MVT::f64, Custom);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SMIN);
setTargetDAGCombine(ISD::SMAX);
setTargetDAGCombine(ISD::UMIN);
setTargetDAGCombine(ISD::UMAX);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::FCANONICALIZE);
// All memory operations. Some folding on the pointer operand is done to help
// matching the constant offsets in the addressing modes.
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::ATOMIC_LOAD);
setTargetDAGCombine(ISD::ATOMIC_STORE);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
setTargetDAGCombine(ISD::ATOMIC_SWAP);
setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
setSchedulingPreference(Sched::RegPressure);
}
const SISubtarget *SITargetLowering::getSubtarget() const {
return static_cast<const SISubtarget *>(Subtarget);
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &CI,
unsigned IntrID) const {
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.memVT = MVT::getVT(CI.getType());
Info.ptrVal = CI.getOperand(0);
Info.align = 0;
Info.vol = false;
Info.readMem = true;
Info.writeMem = true;
return true;
default:
return false;
}
}
bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
EVT) const {
// SI has some legal vector types, but no legal vector operations. Say no
// shuffles are legal in order to prefer scalarizing some vector operations.
return false;
}
bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
// Flat instructions do not have offsets, and only have the register
// address.
return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
}
bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
// MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
// additionally can do r + r + i with addr64. 32-bit has more addressing
// mode options. Depending on the resource constant, it can also do
// (i64 r0) + (i32 r1) * (i14 i).
//
// Private arrays end up using a scratch buffer most of the time, so also
// assume those use MUBUF instructions. Scratch loads / stores are currently
// implemented as mubuf instructions with offen bit set, so slightly
// different than the normal addr64.
if (!isUInt<12>(AM.BaseOffs))
return false;
// FIXME: Since we can split immediate into soffset and immediate offset,
// would it make sense to allow any immediate?
switch (AM.Scale) {
case 0: // r + i or just i, depending on HasBaseReg.
return true;
case 1:
return true; // We have r + r or r + i.
case 2:
if (AM.HasBaseReg) {
// Reject 2 * r + r.
return false;
}
// Allow 2 * r as r + r
// Or 2 * r + i is allowed as r + r + i.
return true;
default: // Don't allow n * r
return false;
}
}
bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
// Assume the we will use FLAT for all global memory accesses
// on VI.
// FIXME: This assumption is currently wrong. On VI we still use
// MUBUF instructions for the r + i addressing mode. As currently
// implemented, the MUBUF instructions only work on buffer < 4GB.
// It may be possible to support > 4GB buffers with MUBUF instructions,
// by setting the stride value in the resource descriptor which would
// increase the size limit to (stride * 4GB). However, this is risky,
// because it has never been validated.
return isLegalFlatAddressingMode(AM);
}
return isLegalMUBUFAddressingMode(AM);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// If the offset isn't a multiple of 4, it probably isn't going to be
// correctly aligned.
if (AM.BaseOffs % 4 != 0)
return isLegalMUBUFAddressingMode(AM);
// There are no SMRD extloads, so if we have to do a small type access we
// will use a MUBUF load.
// FIXME?: We also need to do this if unaligned, but we don't know the
// alignment here.
if (DL.getTypeStoreSize(Ty) < 4)
return isLegalMUBUFAddressingMode(AM);
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
// SMRD instructions have an 8-bit, dword offset on SI.
if (!isUInt<8>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
// On CI+, this can also be a 32-bit literal constant offset. If it fits
// in 8-bits, it can use a smaller encoding.
if (!isUInt<32>(AM.BaseOffs / 4))
return false;
} else if (Subtarget->getGeneration() == SISubtarget::VOLCANIC_ISLANDS) {
// On VI, these use the SMEM format and the offset is 20-bit in bytes.
if (!isUInt<20>(AM.BaseOffs))
return false;
} else
llvm_unreachable("unhandled generation");
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
case AMDGPUAS::PRIVATE_ADDRESS:
return isLegalMUBUFAddressingMode(AM);
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// Basic, single offset DS instructions allow a 16-bit unsigned immediate
// field.
// XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
// an 8-bit dword offset but we don't know the alignment here.
if (!isUInt<16>(AM.BaseOffs))
return false;
if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
return true;
if (AM.Scale == 1 && AM.HasBaseReg)
return true;
return false;
}
case AMDGPUAS::FLAT_ADDRESS:
case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
// For an unknown address space, this usually means that this is for some
// reason being used for pure arithmetic, and not based on some addressing
// computation. We don't have instructions that compute pointers with any
// addressing modes, so treat them as having no offset like flat
// instructions.
return isLegalFlatAddressingMode(AM);
default:
llvm_unreachable("unhandled address space");
}
}
bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
unsigned Align,
bool *IsFast) const {
if (IsFast)
*IsFast = false;
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
if (!VT.isSimple() || VT == MVT::Other)
return false;
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS) {
// ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
// aligned, 8 byte access in a single operation using ds_read2/write2_b32
// with adjacent offsets.
bool AlignedBy4 = (Align % 4 == 0);
if (IsFast)
*IsFast = AlignedBy4;
return AlignedBy4;
}
if (Subtarget->hasUnalignedBufferAccess()) {
// If we have an uniform constant load, it still requires using a slow
// buffer instruction if unaligned.
if (IsFast) {
*IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) ?
(Align % 4 == 0) : true;
}
return true;
}
// Smaller than dword value must be aligned.
if (VT.bitsLT(MVT::i32))
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = true;
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}
EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign, bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
// FIXME: Should account for address space here.
// The default fallback uses the private pointer size as a guess for a type to
// use. Make sure we switch these to 64-bit accesses.
if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
return MVT::v4i32;
if (Size >= 8 && DstAlign >= 4)
return MVT::v2i32;
// Use the default.
return MVT::Other;
}
static bool isFlatGlobalAddrSpace(unsigned AS) {
return AS == AMDGPUAS::GLOBAL_ADDRESS ||
AS == AMDGPUAS::FLAT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS;
}
bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
}
bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
const MemSDNode *MemNode = cast<MemSDNode>(N);
const Value *Ptr = MemNode->getMemOperand()->getValue();
// UndefValue means this is a load of a kernel input. These are uniform.
// Sometimes LDS instructions have constant pointers.
// If Ptr is null, then that means this mem operand contains a
// PseudoSourceValue like GOT.
if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
return true;
const Instruction *I = dyn_cast<Instruction>(Ptr);
return I && I->getMetadata("amdgpu.uniform");
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
return TII->isInlineConstant(Imm);
}
bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
// SimplifySetCC uses this function to determine whether or not it should
// create setcc with i1 operands. We don't have instructions for i1 setcc.
if (VT == MVT::i1 && Op == ISD::SETCC)
return false;
return TargetLowering::isTypeDesirableForOp(Op, VT);
}
SDValue SITargetLowering::LowerParameterPtr(SelectionDAG &DAG,
const SDLoc &SL, SDValue Chain,
unsigned Offset) const {
const DataLayout &DL = DAG.getDataLayout();
MachineFunction &MF = DAG.getMachineFunction();
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(Offset, SL, PtrVT));
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
const SDLoc &SL, SDValue Chain,
unsigned Offset, bool Signed) const {
const DataLayout &DL = DAG.getDataLayout();
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
SDValue PtrOffset = DAG.getUNDEF(PtrVT);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
unsigned Align = DL.getABITypeAlignment(Ty);
ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
if (MemVT.isFloatingPoint())
ExtTy = ISD::EXTLOAD;
SDValue Ptr = LowerParameterPtr(DAG, SL, Chain, Offset);
return DAG.getLoad(ISD::UNINDEXED, ExtTy, VT, SL, Chain, Ptr, PtrOffset,
PtrInfo, MemVT, Align, MachineMemOperand::MONonTemporal |
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
const Function *Fn = MF.getFunction();
DiagnosticInfoUnsupported NoGraphicsHSA(
*Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
DAG.getContext()->diagnose(NoGraphicsHSA);
return DAG.getEntryNode();
}
// Create stack objects that are used for emitting debugger prologue if
// "amdgpu-debugger-emit-prologue" attribute was specified.
if (ST.debuggerEmitPrologue())
createDebuggerPrologueStackObjects(MF);
SmallVector<ISD::InputArg, 16> Splits;
BitVector Skipped(Ins.size());
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
!Arg.Flags.isByVal() && PSInputNum <= 15) {
if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
// We can safely skip PS inputs
Skipped.set(i);
++PSInputNum;
continue;
}
Info->markPSInputAllocated(PSInputNum);
if (Arg.Used)
Info->PSInputEna |= 1 << PSInputNum;
++PSInputNum;
}
if (AMDGPU::isShader(CallConv)) {
// Second split vertices into their elements
if (Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eight.
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else {
Splits.push_back(Arg);
}
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
//
// Check PSInputAddr instead of PSInputEna. The idea is that if the user set
// PSInputAddr, the user wants to enable some bits after the compilation
// based on run-time states. Since we can't know what the final PSInputEna
// will look like, so we shouldn't do anything here and the user should take
// responsibility for the correct programming.
//
// Otherwise, the following restrictions apply:
// - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
// - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
// enabled too.
if (CallConv == CallingConv::AMDGPU_PS &&
((Info->getPSInputAddr() & 0x7F) == 0 ||
((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11)))) {
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
Info->markPSInputAllocated(0);
Info->PSInputEna |= 1;
}
if (!AMDGPU::isShader(CallConv)) {
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
Splits);
assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
} else {
assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() &&
!Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
!Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
!Info->hasWorkItemIDZ());
}
// FIXME: How should these inputs interact with inreg / custom SGPR inputs?
if (Info->hasPrivateSegmentBuffer()) {
unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
CCInfo.AllocateReg(PrivateSegmentBufferReg);
}
if (Info->hasDispatchPtr()) {
unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(DispatchPtrReg);
}
if (Info->hasQueuePtr()) {
unsigned QueuePtrReg = Info->addQueuePtr(*TRI);
MF.addLiveIn(QueuePtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(QueuePtrReg);
}
if (Info->hasKernargSegmentPtr()) {
unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(InputPtrReg);
}
if (Info->hasFlatScratchInit()) {
unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SReg_64RegClass);
CCInfo.AllocateReg(FlatScratchInitReg);
}
AnalyzeFormalArguments(CCInfo, Splits);
SmallVector<SDValue, 16> Chains;
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Skipped[i]) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
MVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
VA.getLocMemOffset();
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
Offset, Ins[i].Flags.isSExt());
Chains.push_back(Arg.getValue(1));
auto *ParamTy =
dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
// On SI local pointers are just offsets into LDS, so they are always
// less than 16-bits. On CI and newer they could potentially be
// real pointers, so we can't guarantee their size.
Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
DAG.getValueType(MVT::i16));
}
InVals.push_back(Arg);
Info->ABIArgOffset = Offset + MemVT.getStoreSize();
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
InVals.push_back(Copy);
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
Regs.push_back(Copy);
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
Regs.append(NumElements, DAG.getUNDEF(VT));
InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
continue;
}
InVals.push_back(Val);
}
// TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
// these from the dispatch pointer.
// Start adding system SGPRs.
if (Info->hasWorkGroupIDX()) {
unsigned Reg = Info->addWorkGroupIDX();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupIDY()) {
unsigned Reg = Info->addWorkGroupIDY();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupIDZ()) {
unsigned Reg = Info->addWorkGroupIDZ();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkGroupInfo()) {
unsigned Reg = Info->addWorkGroupInfo();
MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasPrivateSegmentWaveByteOffset()) {
// Scratch wave offset passed in system SGPR.
unsigned PrivateSegmentWaveByteOffsetReg;
if (AMDGPU::isShader(CallConv)) {
PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
} else
PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
}
// Now that we've figured out where the scratch register inputs are, see if
// should reserve the arguments and use them directly.
bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
// Record that we know we have non-spill stack objects so we don't need to
// check all stack objects later.
if (HasStackObjects)
Info->setHasNonSpillStackObjects(true);
if (ST.isAmdHsaOS()) {
// TODO: Assume we will spill without optimizations.
if (HasStackObjects) {
// If we have stack objects, we unquestionably need the private buffer
// resource. For the HSA ABI, this will be the first 4 user SGPR
// inputs. We can reserve those and use them directly.
unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
Info->setScratchRSrcReg(PrivateSegmentBufferReg);
unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
} else {
unsigned ReservedBufferReg
= TRI->reservedPrivateSegmentBufferReg(MF);
unsigned ReservedOffsetReg
= TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
// We tentatively reserve the last registers (skipping the last two
// which may contain VCC). After register allocation, we'll replace
// these with the ones immediately after those which were really
// allocated. In the prologue copies will be inserted from the argument
// to these reserved registers.
Info->setScratchRSrcReg(ReservedBufferReg);
Info->setScratchWaveOffsetReg(ReservedOffsetReg);
}
} else {
unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
// Without HSA, relocations are used for the scratch pointer and the
// buffer resource setup is always inserted in the prologue. Scratch wave
// offset is still in an input SGPR.
Info->setScratchRSrcReg(ReservedBufferReg);
if (HasStackObjects) {
unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
} else {
unsigned ReservedOffsetReg
= TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
Info->setScratchWaveOffsetReg(ReservedOffsetReg);
}
}
if (Info->hasWorkItemIDX()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkItemIDY()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Info->hasWorkItemIDZ()) {
unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
CCInfo.AllocateReg(Reg);
}
if (Chains.empty())
return Chain;
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
SDValue
SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
if (!AMDGPU::isShader(CallConv))
return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
OutVals, DL, DAG);
Info->setIfReturnsVoid(Outs.size() == 0);
SmallVector<ISD::OutputArg, 48> Splits;
SmallVector<SDValue, 48> SplitVals;
// Split vectors into their elements.
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
const ISD::OutputArg &Out = Outs[i];
if (Out.VT.isVector()) {
MVT VT = Out.VT.getVectorElementType();
ISD::OutputArg NewOut = Out;
NewOut.Flags.setSplit();
NewOut.VT = VT;
// We want the original number of vector elements here, e.g.
// three or five, not four or eight.
unsigned NumElements = Out.ArgVT.getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
DAG.getConstant(j, DL, MVT::i32));
SplitVals.push_back(Elem);
Splits.push_back(NewOut);
NewOut.PartOffset += NewOut.VT.getStoreSize();
}
} else {
SplitVals.push_back(OutVals[i]);
Splits.push_back(Out);
}
}
// CCValAssign - represent the assignment of the return value to a location.
SmallVector<CCValAssign, 48> RVLocs;
// CCState - Info about the registers and stack slots.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analyze outgoing return values.
AnalyzeReturn(CCInfo, Splits);
SDValue Flag;
SmallVector<SDValue, 48> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Copy the result values into the output registers.
for (unsigned i = 0, realRVLocIdx = 0;
i != RVLocs.size();
++i, ++realRVLocIdx) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Arg = SplitVals[realRVLocIdx];
// Copied from other backends.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
break;
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// Update chain and glue.
RetOps[0] = Chain;
if (Flag.getNode())
RetOps.push_back(Flag);
unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN;
return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}
unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("m0", AMDGPU::M0)
.Case("exec", AMDGPU::EXEC)
.Case("exec_lo", AMDGPU::EXEC_LO)
.Case("exec_hi", AMDGPU::EXEC_HI)
.Case("flat_scratch", AMDGPU::FLAT_SCR)
.Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
.Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
.Default(AMDGPU::NoRegister);
if (Reg == AMDGPU::NoRegister) {
report_fatal_error(Twine("invalid register name \""
+ StringRef(RegName) + "\"."));
}
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
report_fatal_error(Twine("invalid register \""
+ StringRef(RegName) + "\" for subtarget."));
}
switch (Reg) {
case AMDGPU::M0:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
if (VT.getSizeInBits() == 32)
return Reg;
break;
case AMDGPU::EXEC:
case AMDGPU::FLAT_SCR:
if (VT.getSizeInBits() == 64)
return Reg;
break;
default:
llvm_unreachable("missing register type checking");
}
report_fatal_error(Twine("invalid type for register \""
+ StringRef(RegName) + "\"."));
}
// If kill is not the last instruction, split the block so kill is always a
// proper terminator.
MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
MachineBasicBlock *BB) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineBasicBlock::iterator SplitPoint(&MI);
++SplitPoint;
if (SplitPoint == BB->end()) {
// Don't bother with a new block.
MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
return BB;
}
MachineFunction *MF = BB->getParent();
MachineBasicBlock *SplitBB
= MF->CreateMachineBasicBlock(BB->getBasicBlock());
// Fix the block phi references to point to the new block for the defs in the
// second piece of the block.
for (MachineBasicBlock *Succ : BB->successors()) {
for (MachineInstr &MI : *Succ) {
if (!MI.isPHI())
break;
for (unsigned I = 2, E = MI.getNumOperands(); I != E; I += 2) {
MachineOperand &FromBB = MI.getOperand(I);
if (BB == FromBB.getMBB()) {
FromBB.setMBB(SplitBB);
break;
}
}
}
}
MF->insert(++MachineFunction::iterator(BB), SplitBB);
SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
SplitBB->transferSuccessors(BB);
BB->addSuccessor(SplitBB);
MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
return SplitBB;
}
MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
case AMDGPU::SI_INIT_M0: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addOperand(MI.getOperand(0));
MI.eraseFromParent();
break;
}
case AMDGPU::BRANCH:
return BB;
case AMDGPU::GET_GROUPSTATICSIZE: {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineFunction *MF = BB->getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
DebugLoc DL = MI.getDebugLoc();
BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
.addOperand(MI.getOperand(0))
.addImm(MFI->LDSSize);
MI.eraseFromParent();
return BB;
}
case AMDGPU::SI_KILL:
return splitKillBlock(MI, BB);
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
}
return BB;
}
bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
// This currently forces unfolding various combinations of fsub into fma with
// free fneg'd operands. As long as we have fast FMA (controlled by
// isFMAFasterThanFMulAndFAdd), we should perform these.
// When fma is quarter rate, for f64 where add / sub are at best half rate,
// most of these combines appear to be cycle neutral but save on instruction
// count / code size.
return true;
}
EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
return MVT::i32;
}
// Answering this is somewhat tricky and depends on the specific device which
// have different rates for fma or all f64 operations.
//
// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
// regardless of which device (although the number of cycles differs between
// devices), so it is always profitable for f64.
//
// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
// only on full rate devices. Normally, we should prefer selecting v_mad_f32
// which we can always do even without fused FP ops since it returns the same
// result as the separate operations and since it is always full
// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
// however does not support denormals, so we do report fma as faster if we have
// a fast fma device and require denormals.
//
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
// This is as fast on some subtargets. However, we always have full rate f32
// mad available which returns the same result as the separate operations
// which we should prefer over fma. We can't use this if we want to support
// denormals, so only report this in these cases.
return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
case MVT::f64:
return true;
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return LowerGlobalAddress(MFI, Op, DAG);
}
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
case ISD::TRAP: return lowerTRAP(Op, DAG);
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FINode->getIndex();
// A FrameIndex node represents a 32-bit offset into scratch memory. If the
// high bit of a frame index offset were to be set, this would mean that it
// represented an offset of ~2GB * 64 = ~128GB from the start of the scratch
// buffer, with 64 being the number of threads per wave.
//
// The maximum private allocation for the entire GPU is 4G, and we are
// concerned with the largest the index could ever be for an individual
// workitem. This will occur with the minmum dispatch size. If a program
// requires more, the dispatch size will be reduced.
//
// With this limit, we can mark the high bit of the FrameIndex node as known
// zero, which is important, because it means in most situations we can prove
// that values derived from FrameIndex nodes are non-negative. This enables us
// to take advantage of more addressing modes when accessing scratch buffers,
// since for scratch reads/writes, the register offset must always be
// positive.
uint64_t MaxGPUAlloc = UINT64_C(4) * 1024 * 1024 * 1024;
// XXX - It is unclear if partial dispatch works. Assume it works at half wave
// granularity. It is probably a full wave.
uint64_t MinGranularity = 32;
unsigned KnownBits = Log2_64(MaxGPUAlloc / MinGranularity);
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), KnownBits);
SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
DAG.getValueType(ExtVT));
}
bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
if (Intr->getOpcode() != ISD::INTRINSIC_W_CHAIN)
return false;
switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
default: return false;
case AMDGPUIntrinsic::amdgcn_if:
case AMDGPUIntrinsic::amdgcn_else:
case AMDGPUIntrinsic::amdgcn_break:
case AMDGPUIntrinsic::amdgcn_if_break:
case AMDGPUIntrinsic::amdgcn_else_break:
case AMDGPUIntrinsic::amdgcn_loop:
case AMDGPUIntrinsic::amdgcn_end_cf:
return true;
}
}
void SITargetLowering::createDebuggerPrologueStackObjects(
MachineFunction &MF) const {
// Create stack objects that are used for emitting debugger prologue.
//
// Debugger prologue writes work group IDs and work item IDs to scratch memory
// at fixed location in the following format:
// offset 0: work group ID x
// offset 4: work group ID y
// offset 8: work group ID z
// offset 16: work item ID x
// offset 20: work item ID y
// offset 24: work item ID z
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
int ObjectIdx = 0;
// For each dimension:
for (unsigned i = 0; i < 3; ++i) {
// Create fixed stack object for work group ID.
ObjectIdx = MF.getFrameInfo()->CreateFixedObject(4, i * 4, true);
Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
// Create fixed stack object for work item ID.
ObjectIdx = MF.getFrameInfo()->CreateFixedObject(4, i * 4 + 16, true);
Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
}
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
SDNode *SetCC = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SetCC = Intr;
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
if (!isCFIntrinsic(Intr)) {
// This is a uniform branch so we don't need to legalize.
return BRCOND;
}
assert(!SetCC ||
(SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE));
// Build the result and
ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
Ops.append(Intr->op_begin() + 1, Intr->op_end());
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res), Ops).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
BR = NewBR.getNode();
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::getSegmentAperture(unsigned AS,
SelectionDAG &DAG) const {
SDLoc SL;
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
unsigned UserSGPR = Info->getQueuePtrUserSGPR();
assert(UserSGPR != AMDGPU::NoRegister);
SDValue QueuePtr = CreateLiveInRegister(
DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
// Offset into amd_queue_t for group_segment_aperture_base_hi /
// private_segment_aperture_base_hi.
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr,
DAG.getConstant(StructOffset, SL, MVT::i64));
// TODO: Use custom target PseudoSourceValue.
// TODO: We should use the value from the IR intrinsic call, but it might not
// be available and how do we get it?
Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
AMDGPUAS::CONSTANT_ADDRESS));
MachinePointerInfo PtrInfo(V, StructOffset);
return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr, PtrInfo,
MinAlign(64, StructOffset),
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
SDValue Src = ASC->getOperand(0);
// FIXME: Really support non-0 null pointers.
SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32);
SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
// flat -> local/private
if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
return DAG.getNode(ISD::SELECT, SL, MVT::i32,
NonNull, Ptr, SegmentNullPtr);
}
}
// local/private -> flat
if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NonNull
= DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG);
SDValue CvtPtr
= DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
FlatNullPtr);
}
}
// global <-> flat are no-ops and never emitted.
const MachineFunction &MF = DAG.getMachineFunction();
DiagnosticInfoUnsupported InvalidAddrSpaceCast(
*MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
DAG.getContext()->diagnose(InvalidAddrSpaceCast);
return DAG.getUNDEF(ASC->getValueType(0));
}
static bool shouldEmitGOTReloc(const GlobalValue *GV,
const TargetMachine &TM) {
return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
!TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
}
bool
SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// We can fold offsets for anything that doesn't require a GOT relocation.
return GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
!shouldEmitGOTReloc(GA->getGlobal(), getTargetMachine());
}
static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
SDLoc DL, unsigned Offset, EVT PtrVT,
unsigned GAFlags = SIInstrInfo::MO_NONE) {
// In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
// lowered to the following code sequence:
// s_getpc_b64 s[0:1]
// s_add_u32 s0, s0, $symbol
// s_addc_u32 s1, s1, 0
//
// s_getpc_b64 returns the address of the s_add_u32 instruction and then
// a fixup or relocation is emitted to replace $symbol with a literal
// constant, which is a pc-relative offset from the encoding of the $symbol
// operand to the global variable.
//
// What we want here is an offset from the value returned by s_getpc
// (which is the address of the s_add_u32 instruction) to the global
// variable, but since the encoding of $symbol starts 4 bytes after the start
// of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
// small. This requires us to add 4 to the global variable offset in order to
// compute the correct address.
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
GAFlags);
return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, GA);
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
GSD->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS)
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
SDLoc DL(GSD);
const GlobalValue *GV = GSD->getGlobal();
EVT PtrVT = Op.getValueType();
if (!shouldEmitGOTReloc(GV, getTargetMachine()))
return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
SIInstrInfo::MO_GOTPCREL);
Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
const DataLayout &DataLayout = DAG.getDataLayout();
unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
// FIXME: Use a PseudoSourceValue once those can be assigned an address space.
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
MachineMemOperand::MOInvariant);
}
SDValue SITargetLowering::lowerTRAP(SDValue Op,
SelectionDAG &DAG) const {
const MachineFunction &MF = DAG.getMachineFunction();
DiagnosticInfoUnsupported NoTrap(*MF.getFunction(),
"trap handler not supported",
Op.getDebugLoc(),
DS_Warning);
DAG.getContext()->diagnose(NoTrap);
// Emit s_endpgm.
// FIXME: This should really be selected to s_trap, but that requires
// setting up the trap handler for it o do anything.
return DAG.getNode(AMDGPUISD::ENDPGM, SDLoc(Op), MVT::Other,
Op.getOperand(0));
}
SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
const SDLoc &DL, SDValue V) const {
// We can't use S_MOV_B32 directly, because there is no way to specify m0 as
// the destination register.
//
// We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
// so we will end up with redundant moves to m0.
//
// We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
// A Null SDValue creates a glue result.
SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
V, Chain);
return SDValue(M0, 0);
}
SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
SDValue Op,
MVT VT,
unsigned Offset) const {
SDLoc SL(Op);
SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
DAG.getEntryNode(), Offset, false);
// The local size values will have the hi 16-bits as zero.
return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
DAG.getValueType(VT));
}
static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
"non-hsa intrinsic with hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
static SDValue emitRemovedIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
"intrinsic not supported on subtarget",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto MFI = MF.getInfo<SIMachineFunctionInfo>();
const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
EVT VT = Op.getValueType();
SDLoc DL(Op);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
// TODO: Should this propagate fast-math-flags?
switch (IntrinsicID) {
case Intrinsic::amdgcn_dispatch_ptr:
case Intrinsic::amdgcn_queue_ptr: {
if (!Subtarget->isAmdHsaOS()) {
DiagnosticInfoUnsupported BadIntrin(
*MF.getFunction(), "unsupported hsa intrinsic without hsa target",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
TRI->getPreloadedValue(MF, Reg), VT);
}
case Intrinsic::amdgcn_implicitarg_ptr: {
unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
return LowerParameterPtr(DAG, DL, DAG.getEntryNode(), offset);
}
case Intrinsic::amdgcn_kernarg_segment_ptr: {
unsigned Reg
= TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
}
case Intrinsic::amdgcn_rcp:
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq:
case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_rsq_legacy: {
if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
return emitRemovedIntrinsicError(DAG, DL, VT);
return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
}
case Intrinsic::amdgcn_rsq_clamp: {
if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
Type *Type = VT.getTypeForEVT(*DAG.getContext());
APFloat Max = APFloat::getLargest(Type->getFltSemantics());
APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
DAG.getConstantFP(Max, DL, VT));
return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
DAG.getConstantFP(Min, DL, VT));
}
case Intrinsic::r600_read_ngroups_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_X, false);
case Intrinsic::r600_read_ngroups_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Y, false);
case Intrinsic::r600_read_ngroups_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::NGROUPS_Z, false);
case Intrinsic::r600_read_global_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
case Intrinsic::r600_read_global_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
case Intrinsic::r600_read_global_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
case Intrinsic::r600_read_local_size_x:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_X);
case Intrinsic::r600_read_local_size_y:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Y);
case Intrinsic::r600_read_local_size_z:
if (Subtarget->isAmdHsaOS())
return emitNonHSAIntrinsicError(DAG, DL, VT);
return lowerImplicitZextParam(DAG, Op, MVT::i16,
SI::KernelInputOffsets::LOCAL_SIZE_Z);
case Intrinsic::amdgcn_read_workdim:
case AMDGPUIntrinsic::AMDGPU_read_workdim: // Legacy name.
// Really only 2 bits.
return lowerImplicitZextParam(DAG, Op, MVT::i8,
getImplicitParameterOffset(MFI, GRID_DIM));
case Intrinsic::amdgcn_workgroup_id_x:
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
case Intrinsic::amdgcn_workgroup_id_y:
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
case Intrinsic::amdgcn_workgroup_id_z:
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
case AMDGPUIntrinsic::SI_load_const: {
SDValue Ops[] = {
Op.getOperand(1),
Op.getOperand(2)
};
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
Op->getVTList(), Ops, VT, MMO);
}
case AMDGPUIntrinsic::amdgcn_fdiv_fast: {
return lowerFDIV_FAST(Op, DAG);
}
case AMDGPUIntrinsic::SI_vs_load_input:
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::SI_fs_constant: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
DAG.getConstant(2, DL, MVT::i32), // P0
Op.getOperand(1), Op.getOperand(2), Glue);
}
case AMDGPUIntrinsic::SI_packf16:
if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
return DAG.getUNDEF(MVT::i32);
return Op;
case AMDGPUIntrinsic::SI_fs_interp: {
SDValue IJ = Op.getOperand(4);
SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
DAG.getConstant(0, DL, MVT::i32));
SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
DAG.getConstant(1, DL, MVT::i32));
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
SDValue Glue = M0.getValue(1);
SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
DAG.getVTList(MVT::f32, MVT::Glue),
I, Op.getOperand(1), Op.getOperand(2), Glue);
Glue = SDValue(P1.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
Op.getOperand(1), Op.getOperand(2), Glue);
}
case Intrinsic::amdgcn_interp_p1: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
SDValue Glue = M0.getValue(1);
return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Glue);
}
case Intrinsic::amdgcn_interp_p2: {
SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
SDValue Glue = SDValue(M0.getNode(), 1);
return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
Glue);
}
case Intrinsic::amdgcn_sin:
return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_cos:
return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_log_clamp: {
if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
return SDValue();
DiagnosticInfoUnsupported BadIntrin(
*MF.getFunction(), "intrinsic not supported on subtarget",
DL.getDebugLoc());
DAG.getContext()->diagnose(BadIntrin);
return DAG.getUNDEF(VT);
}
case Intrinsic::amdgcn_ldexp:
return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_fract:
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
case Intrinsic::amdgcn_class:
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_fmas:
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
Op.getOperand(4));
case Intrinsic::amdgcn_div_fixup:
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::amdgcn_trig_preop:
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::amdgcn_div_scale: {
// 3rd parameter required to be a constant.
const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
if (!Param)
return DAG.getUNDEF(VT);
// Translate to the operands expected by the machine instruction. The
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
// Note this order is opposite of the machine instruction's operations,
// which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
// intrinsic has the numerator as the first operand to match a normal
// division operation.
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
Denominator, Numerator);
}
default:
return AMDGPUTargetLowering::LowerOperation(Op, DAG);
}
}
SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec: {
MemSDNode *M = cast<MemSDNode>(Op);
unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
SDValue Ops[] = {
M->getOperand(0), // Chain
M->getOperand(2), // Ptr
M->getOperand(3) // Value
};
return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
M->getMemoryVT(), M->getMemOperand());
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SDLoc DL(Op);
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::SI_sendmsg: {
Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
SDValue Glue = Chain.getValue(1);
return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
Op.getOperand(2), Glue);
}
case AMDGPUIntrinsic::SI_tbuffer_store: {
SDValue Ops[] = {
Chain,
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10),
Op.getOperand(11),
Op.getOperand(12),
Op.getOperand(13),
Op.getOperand(14)
};
EVT VT = Op.getOperand(3).getValueType();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOStore,
VT.getStoreSize(), 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
Op->getVTList(), Ops, VT, MMO);
}
case AMDGPUIntrinsic::AMDGPU_kill: {
if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Op.getOperand(2))) {
if (!K->isNegative())
return Chain;
}
return Op;
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT MemVT = Load->getMemoryVT();
if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
assert(MemVT == MVT::i1 && "Only i1 non-extloads expected");
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, MVT::i8, MMO);
SDValue Ops[] = {
DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (!MemVT.isVector())
return SDValue();
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
unsigned AS = Load->getAddressSpace();
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
AS, Load->getAlignment())) {
SDValue Ops[2];
std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
return DAG.getMergeValues(Ops, DL);
}
unsigned NumElements = MemVT.getVectorNumElements();
switch (AS) {
case AMDGPUAS::CONSTANT_ADDRESS:
if (isMemOpUniform(Load))
return SDValue();
// Non-uniform loads will be selected to MUBUF instructions, so they
// have the same legalization requires ments as global and private
// loads.
//
// Fall-through
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::FLAT_ADDRESS:
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
// v4 loads are supported for private and global memory.
return SDValue();
case AMDGPUAS::PRIVATE_ADDRESS: {
// Depending on the setting of the private_element_size field in the
// resource descriptor, we can only make private accesses up to a certain
// size.
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorLoad(Load, DAG);
case 8:
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
return SDValue();
case 16:
// Same as global/flat
if (NumElements > 4)
return SplitVectorLoad(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
}
case AMDGPUAS::LOCAL_ADDRESS: {
if (NumElements > 2)
return SplitVectorLoad(Op, DAG);
if (NumElements == 2)
return SDValue();
// If properly aligned, if we split we might be able to use ds_read_b64.
return SplitVectorLoad(Op, DAG);
}
default:
return SDValue();
}
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
SDValue One = DAG.getConstant(1, DL, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
// 1.0 / sqrt(x) -> rsq(x)
//
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
if (RHS.getOpcode() == ISD::FSQRT)
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
}
const SDNodeFlags *Flags = Op->getFlags();
if (Unsafe || Flags->hasAllowReciprocal()) {
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDNodeFlags Flags;
Flags.setUnsafeAlgebra(true);
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
}
return SDValue();
}
// Faster 2.5 ULP division that does not support denormals.
SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
const APFloat K0Val(BitsToFloat(0x6f800000));
const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
EVT SetCCVT =
getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
// TODO: Should this propagate fast-math-flags?
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
// rcp does not support denormals.
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
return FastLowered;
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, RHS, RHS, LHS);
SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, LHS, RHS, LHS);
// Denominator is scaled to not be denormal, so using rcp is ok.
SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled);
SDValue Scale = NumeratorScaled.getValue(1);
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, Fma4, Fma1, Fma3, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
if (DAG.getTarget().Options.UnsafeFPMath)
return lowerFastUnsafeFDIV(Op, DAG);
SDLoc SL(Op);
SDValue X = Op.getOperand(0);
SDValue Y = Op.getOperand(1);
const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
NegDivScale0, Mul, DivScale1);
SDValue Scale;
if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
// Workaround a hardware bug on SI where the condition output from div_scale
// is not usable.
const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
// Figure out if the scale to use for div_fmas.
SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
SDValue Scale0Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
SDValue Scale1Hi
= DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
} else {
Scale = DivScale1.getValue(1);
}
SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
Fma4, Fma3, Mul, Scale);
return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
if (VT == MVT::i1) {
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
}
assert(VT.isVector() &&
Store->getValue().getValueType().getScalarType() == MVT::i32);
unsigned AS = Store->getAddressSpace();
if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
AS, Store->getAlignment())) {
return expandUnalignedStore(Store, DAG);
}
unsigned NumElements = VT.getVectorNumElements();
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::FLAT_ADDRESS:
if (NumElements > 4)
return SplitVectorStore(Op, DAG);
return SDValue();
case AMDGPUAS::PRIVATE_ADDRESS: {
switch (Subtarget->getMaxPrivateElementSize()) {
case 4:
return scalarizeVectorStore(Store, DAG);
case 8:
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
return SDValue();
case 16:
if (NumElements > 4)
return SplitVectorStore(Op, DAG);
return SDValue();
default:
llvm_unreachable("unsupported private_element_size");
}
}
case AMDGPUAS::LOCAL_ADDRESS: {
if (NumElements > 2)
return SplitVectorStore(Op, DAG);
if (NumElements == 2)
return Op;
// If properly aligned, if we split we might be able to use ds_write_b64.
return SplitVectorStore(Op, DAG);
}
default:
llvm_unreachable("unhandled address space");
}
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
// TODO: Should this propagate fast-math-flags?
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
DAG.getNode(ISD::FMUL, DL, VT, Arg,
DAG.getConstantFP(0.5/M_PI, DL,
VT)));
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
default:
llvm_unreachable("Wrong trig opcode");
}
}
SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
assert(AtomicNode->isCompareAndSwap());
unsigned AS = AtomicNode->getAddressSpace();
// No custom lowering required for local address space
if (!isFlatGlobalAddrSpace(AS))
return Op;
// Non-local address space requires custom lowering for atomic compare
// and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
SDLoc DL(Op);
SDValue ChainIn = Op.getOperand(0);
SDValue Addr = Op.getOperand(1);
SDValue Old = Op.getOperand(2);
SDValue New = Op.getOperand(3);
EVT VT = Op.getValueType();
MVT SimpleVT = VT.getSimpleVT();
MVT VecType = MVT::getVectorVT(SimpleVT, 2);
SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
SDValue Ops[] = { ChainIn, Addr, NewOld };
return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
Ops, VT, AtomicNode->getMemOperand());
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
return SDValue();
}
/// \brief Return true if the given offset Size in bytes can be folded into
/// the immediate offsets of a memory instruction for the given address space.
static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
const SISubtarget &STI) {
switch (AS) {
case AMDGPUAS::GLOBAL_ADDRESS: {
// MUBUF instructions a 12-bit offset in bytes.
return isUInt<12>(OffsetSize);
}
case AMDGPUAS::CONSTANT_ADDRESS: {
// SMRD instructions have an 8-bit offset in dwords on SI and
// a 20-bit offset in bytes on VI.
if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
return isUInt<20>(OffsetSize);
else
return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
}
case AMDGPUAS::LOCAL_ADDRESS:
case AMDGPUAS::REGION_ADDRESS: {
// The single offset versions have a 16-bit offset in bytes.
return isUInt<16>(OffsetSize);
}
case AMDGPUAS::PRIVATE_ADDRESS:
// Indirect register addressing does not use any offsets.
default:
return 0;
}
}
// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
// This is a variant of
// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
//
// The normal DAG combiner will do this, but only if the add has one use since
// that would increase the number of instructions.
//
// This prevents us from seeing a constant offset that can be folded into a
// memory instruction's addressing mode. If we know the resulting add offset of
// a pointer can be folded into an addressing offset, we can replace the pointer
// operand with the add of new constant offset. This eliminates one of the uses,
// and may allow the remaining use to also be simplified.
//
SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
unsigned AddrSpace,
DAGCombinerInfo &DCI) const {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (N0.getOpcode() != ISD::ADD)
return SDValue();
const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
if (!CN1)
return SDValue();
const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!CAdd)
return SDValue();
// If the resulting offset is too large, we can't fold it into the addressing
// mode offset.
APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget()))
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
EVT VT = N->getValueType(0);
SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
}
SDValue SITargetLowering::performAndCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (DCI.isBeforeLegalize())
return SDValue();
if (SDValue Base = AMDGPUTargetLowering::performAndCombine(N, DCI))
return Base;
SelectionDAG &DAG = DCI.DAG;
// (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
// fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::SETCC &&
RHS.getOpcode() == ISD::SETCC) {
ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
SDValue X = LHS.getOperand(0);
SDValue Y = RHS.getOperand(0);
if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
return SDValue();
if (LCC == ISD::SETO) {
if (X != LHS.getOperand(1))
return SDValue();
if (RCC == ISD::SETUNE) {
const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
if (!C1 || !C1->isInfinity() || C1->isNegative())
return SDValue();
const uint32_t Mask = SIInstrFlags::N_NORMAL |
SIInstrFlags::N_SUBNORMAL |
SIInstrFlags::N_ZERO |
SIInstrFlags::P_ZERO |
SIInstrFlags::P_SUBNORMAL |
SIInstrFlags::P_NORMAL;
static_assert(((~(SIInstrFlags::S_NAN |
SIInstrFlags::Q_NAN |
SIInstrFlags::N_INFINITY |
SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
"mask not equal");
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
X, DAG.getConstant(Mask, DL, MVT::i32));
}
}
}
return SDValue();
}
SDValue SITargetLowering::performOrCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
if (VT == MVT::i64) {
// TODO: This could be a generic combine with a predicate for extracting the
// high half of an integer being free.
// (or i64:x, (zero_extend i32:y)) ->
// i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
RHS.getOpcode() != ISD::ZERO_EXTEND)
std::swap(LHS, RHS);
if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
SDValue ExtSrc = RHS.getOperand(0);
EVT SrcVT = ExtSrc.getValueType();
if (SrcVT == MVT::i32) {
SDLoc SL(N);
SDValue LowLHS, HiBits;
std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
DCI.AddToWorklist(LowOr.getNode());
DCI.AddToWorklist(HiBits.getNode());
SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
LowOr, HiBits);
return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
}
}
}
// or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
SDValue Src = LHS.getOperand(0);
if (Src != RHS.getOperand(0))
return SDValue();
const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
if (!CLHS || !CRHS)
return SDValue();
// Only 10 bits are used.
static const uint32_t MaxMask = 0x3ff;
uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
SDLoc DL(N);
return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
Src, DAG.getConstant(NewMask, DL, MVT::i32));
}
return SDValue();
}
SDValue SITargetLowering::performClassCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDValue Mask = N->getOperand(1);
// fp_class x, 0 -> false
if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
if (CMask->isNullValue())
return DAG.getConstant(0, SDLoc(N), MVT::i1);
}
if (N->getOperand(0).isUndef())
return DAG.getUNDEF(MVT::i1);
return SDValue();
}
// Constant fold canonicalize.
SDValue SITargetLowering::performFCanonicalizeCombine(
SDNode *N,
DAGCombinerInfo &DCI) const {
ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
if (!CFP)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
const APFloat &C = CFP->getValueAPF();
// Flush denormals to 0 if not enabled.
if (C.isDenormal()) {
EVT VT = N->getValueType(0);
if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
return DAG.getConstantFP(0.0, SDLoc(N), VT);
if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
return DAG.getConstantFP(0.0, SDLoc(N), VT);
}
if (C.isNaN()) {
EVT VT = N->getValueType(0);
APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
if (C.isSignaling()) {
// Quiet a signaling NaN.
return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
}
// Make sure it is the canonical NaN bitpattern.
//
// TODO: Can we use -1 as the canonical NaN value since it's an inline
// immediate?
if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
}
return SDValue(CFP, 0);
}
static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
switch (Opc) {
case ISD::FMAXNUM:
return AMDGPUISD::FMAX3;
case ISD::SMAX:
return AMDGPUISD::SMAX3;
case ISD::UMAX:
return AMDGPUISD::UMAX3;
case ISD::FMINNUM:
return AMDGPUISD::FMIN3;
case ISD::SMIN:
return AMDGPUISD::SMIN3;
case ISD::UMIN:
return AMDGPUISD::UMIN3;
default:
llvm_unreachable("Not a min/max opcode");
}
}
static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
SDValue Op0, SDValue Op1, bool Signed) {
ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
if (!K1)
return SDValue();
ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
if (Signed) {
if (K0->getAPIntValue().sge(K1->getAPIntValue()))
return SDValue();
} else {
if (K0->getAPIntValue().uge(K1->getAPIntValue()))
return SDValue();
}
EVT VT = K0->getValueType(0);
return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
}
static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
return true;
return DAG.isKnownNeverNaN(Op);
}
static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
SDValue Op0, SDValue Op1) {
ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
if (!K1)
return SDValue();
ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
if (!K0)
return SDValue();
// Ordered >= (although NaN inputs should have folded away by now).
APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
if (Cmp == APFloat::cmpGreaterThan)
return SDValue();
// This isn't safe with signaling NaNs because in IEEE mode, min/max on a
// signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
// give the other result, which is different from med3 with a NaN input.
SDValue Var = Op0.getOperand(0);
if (!isKnownNeverSNan(DAG, Var))
return SDValue();
return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
Var, SDValue(K0, 0), SDValue(K1, 0));
}
SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opc = N->getOpcode();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Only do this if the inner op has one use since this will just increases
// register pressure for no benefit.
if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
// max(max(a, b), c) -> max3(a, b, c)
// min(min(a, b), c) -> min3(a, b, c)
if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0.getOperand(0),
Op0.getOperand(1),
Op1);
}
// Try commuted.
// max(a, max(b, c)) -> max3(a, b, c)
// min(a, min(b, c)) -> min3(a, b, c)
if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
SDLoc DL(N);
return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
DL,
N->getValueType(0),
Op0,
Op1.getOperand(0),
Op1.getOperand(1));
}
}
// min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
return Med3;
}
if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
return Med3;
}
// fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
(Opc == AMDGPUISD::FMIN_LEGACY &&
Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
return Res;
}
return SDValue();
}
SDValue SITargetLowering::performSetCCCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc SL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = LHS.getValueType();
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Match isinf pattern
// (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
if (!CRHS)
return SDValue();
const APFloat &APF = CRHS->getValueAPF();
if (APF.isInfinity() && !APF.isNegative()) {
unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
DAG.getConstant(Mask, SL, MVT::i32));
}
}
return SDValue();
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch (N->getOpcode()) {
default:
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
case ISD::SETCC:
return performSetCCCombine(N, DCI);
case ISD::FMAXNUM:
case ISD::FMINNUM:
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN:
case AMDGPUISD::FMIN_LEGACY:
case AMDGPUISD::FMAX_LEGACY: {
if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
N->getValueType(0) != MVT::f64 &&
getTargetMachine().getOptLevel() > CodeGenOpt::None)
return performMinMaxCombine(N, DCI);
break;
}
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3: {
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
// TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
if (Src.getOpcode() == ISD::SRL) {
// cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
// cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
// cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
if (SrcOffset < 32 && SrcOffset % 8 == 0) {
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, DL,
MVT::f32, Src.getOperand(0));
}
}
}
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
}
case ISD::FADD: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
if (VT != MVT::f32)
break;
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (Subtarget->hasFP32Denormals())
break;
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// These should really be instruction patterns, but writing patterns with
// source modiifiers is a pain.
// fadd (fadd (a, a), b) -> mad 2.0, a, b
if (LHS.getOpcode() == ISD::FADD) {
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
}
}
// fadd (b, fadd (a, a)) -> mad 2.0, a, b
if (RHS.getOpcode() == ISD::FADD) {
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
}
}
return SDValue();
}
case ISD::FSUB: {
if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
break;
EVT VT = N->getValueType(0);
// Try to get the fneg to fold into the source modifier. This undoes generic
// DAG combines and folds them into the mad.
//
// Only do this if we are not trying to support denormals. v_mad_f32 does
// not support denormals ever.
if (VT == MVT::f32 &&
!Subtarget->hasFP32Denormals()) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
if (LHS.getOpcode() == ISD::FADD) {
// (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
SDValue A = LHS.getOperand(0);
if (A == LHS.getOperand(1)) {
const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
}
}
if (RHS.getOpcode() == ISD::FADD) {
// (fsub c, (fadd a, a)) -> mad -2.0, a, c
SDValue A = RHS.getOperand(0);
if (A == RHS.getOperand(1)) {
const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
}
}
return SDValue();
}
break;
}
case ISD::LOAD:
case ISD::STORE:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE:
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case AMDGPUISD::ATOMIC_INC:
case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics.
if (DCI.isBeforeLegalize())
break;
MemSDNode *MemNode = cast<MemSDNode>(N);
SDValue Ptr = MemNode->getBasePtr();
// TODO: We could also do this for multiplies.
unsigned AS = MemNode->getAddressSpace();
if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
if (NewPtr) {
SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
}
}
break;
}
case ISD::AND:
return performAndCombine(N, DCI);
case ISD::OR:
return performOrCombine(N, DCI);
case AMDGPUISD::FP_CLASS:
return performClassCombine(N, DCI);
case ISD::FCANONICALIZE:
return performFCanonicalizeCombine(N, DCI);
case AMDGPUISD::FRACT:
case AMDGPUISD::RCP:
case AMDGPUISD::RSQ:
case AMDGPUISD::RSQ_LEGACY:
case AMDGPUISD::RSQ_CLAMP:
case AMDGPUISD::LDEXP: {
SDValue Src = N->getOperand(0);
if (Src.isUndef())
return Src;
break;
}
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (TII->isInlineConstant(Node->getAPIntValue()))
return 0;
uint64_t Val = Node->getZExtValue();
return isUInt<32>(Val) ? Val : -1;
}
if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
return 0;
if (Node->getValueType(0) == MVT::f32)
return FloatToBits(Node->getValueAPF().convertToFloat());
return -1;
}
return -1;
}
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Lane = 0;
unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
unsigned NewDmask = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
assert(Dmask);
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
static bool isFrameIndexOp(SDValue Op) {
if (Op.getOpcode() == ISD::AssertZext)
Op = Op.getOperand(0);
return isa<FrameIndexSDNode>(Op);
}
/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
/// with frame index operands.
/// LLVM assumes that inputs are to these instructions are registers.
void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
if (!isFrameIndexOp(Node->getOperand(i))) {
Ops.push_back(Node->getOperand(i));
continue;
}
SDLoc DL(Node);
Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
Node->getOperand(i).getValueType(),
Node->getOperand(i)), 0));
}
DAG.UpdateNodeOperands(Node, Ops);
}
/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
unsigned Opcode = Node->getMachineOpcode();
if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
!TII->isGather4(Opcode))
adjustWritemask(Node, DAG);
if (Opcode == AMDGPU::INSERT_SUBREG ||
Opcode == AMDGPU::REG_SEQUENCE) {
legalizeTargetIndependentNode(Node, DAG);
return Node;
}
return Node;
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
if (TII->isVOP3(MI.getOpcode())) {
// Make sure constant bus requirements are respected.
TII->legalizeOperandsVOP3(MRI, MI);
return;
}
if (TII->isMIMG(MI)) {
unsigned VReg = MI.getOperand(0).getReg();
unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4;
unsigned Writemask = MI.getOperand(DmaskIdx).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VGPR_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet);
MI.setDesc(TII->get(NewOpcode));
MRI.setRegClass(VReg, RC);
return;
}
// Replace unused atomics with the no return version.
int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
if (NoRetAtomicOp != -1) {
if (!Node->hasAnyUseOfValue(0)) {
MI.setDesc(TII->get(NoRetAtomicOp));
MI.RemoveOperand(0);
return;
}
// For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
// instruction, because the return type of these instructions is a vec2 of
// the memory type, so it can be tied to the input operand.
// This means these instructions always have a use, so we need to add a
// special case to check if the atomic has only one extract_subreg use,
// which itself has no uses.
if ((Node->hasNUsesOfValue(1, 0) &&
Node->use_begin()->isMachineOpcode() &&
Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
!Node->use_begin()->hasAnyUseOfValue(0))) {
unsigned Def = MI.getOperand(0).getReg();
// Change this into a noret atomic.
MI.setDesc(TII->get(NoRetAtomicOp));
MI.RemoveOperand(0);
// If we only remove the def operand from the atomic instruction, the
// extract_subreg will be left with a use of a vreg without a def.
// So we need to insert an implicit_def to avoid machine verifier
// errors.
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
TII->get(AMDGPU::IMPLICIT_DEF), Def);
}
return;
}
}
static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
uint64_t Val) {
SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
}
MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
const SDLoc &DL,
SDValue Ptr) const {
const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
const SDValue Ops0[] = {
DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
buildSMovImm32(DAG, DL, 0),
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
};
SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
MVT::v2i32, Ops0), 0);
// Combine the constants and the pointer.
const SDValue Ops1[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
Ptr,
DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
SubRegHi,
DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
}
/// \brief Return a resource descriptor with the 'Add TID' bit enabled
/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
/// of the resource descriptor) to create an offset, which is added to
/// the resource pointer.
MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
SDValue Ptr, uint32_t RsrcDword1,
uint64_t RsrcDword2And3) const {
SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
if (RsrcDword1) {
PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
DAG.getConstant(RsrcDword1, DL, MVT::i32)),
0);
}
SDValue DataLo = buildSMovImm32(DAG, DL,
RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
const SDValue Ops[] = {
DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
PtrLo,
DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
PtrHi,
DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
DataLo,
DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
DataHi,
DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
};
return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
}
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
cast<RegisterSDNode>(VReg)->getReg(), VT);
}
//===----------------------------------------------------------------------===//
// SI Inline Assembly Support
//===----------------------------------------------------------------------===//
std::pair<unsigned, const TargetRegisterClass *>
SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 's':
case 'r':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
case 64:
return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
case 128:
return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
case 256:
return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
}
case 'v':
switch (VT.getSizeInBits()) {
default:
return std::make_pair(0U, nullptr);
case 32:
return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
case 64:
return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
case 96:
return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
case 128:
return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
case 256:
return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
case 512:
return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
}
}
}
if (Constraint.size() > 1) {
const TargetRegisterClass *RC = nullptr;
if (Constraint[1] == 'v') {
RC = &AMDGPU::VGPR_32RegClass;
} else if (Constraint[1] == 's') {
RC = &AMDGPU::SGPR_32RegClass;
}
if (RC) {
uint32_t Idx;
bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
if (!Failed && Idx < RC->getNumRegs())
return std::make_pair(RC->getRegister(Idx), RC);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
SITargetLowering::ConstraintType
SITargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 's':
case 'v':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
|