File: RedundantExpressionCheck.cpp

package info (click to toggle)
llvm-toolchain-4.0 1%3A4.0.1-10~deb9u2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 493,332 kB
  • sloc: cpp: 2,698,100; ansic: 552,773; asm: 128,821; python: 121,589; objc: 105,054; sh: 21,174; lisp: 6,758; ml: 5,532; perl: 5,311; pascal: 5,245; makefile: 2,083; cs: 1,868; xml: 686; php: 212; csh: 117
file content (740 lines) | stat: -rw-r--r-- 28,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
//===--- RedundantExpressionCheck.cpp - clang-tidy-------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "RedundantExpressionCheck.h"
#include "../utils/Matchers.h"
#include "../utils/OptionsUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <set>
#include <string>
#include <vector>

using namespace clang::ast_matchers;
using namespace clang::tidy::matchers;

namespace clang {
namespace tidy {
namespace misc {

namespace {
using llvm::APSInt;
} // namespace

static const char KnownBannedMacroNames[] =
    "EAGAIN;EWOULDBLOCK;SIGCLD;SIGCHLD;";

static bool incrementWithoutOverflow(const APSInt &Value, APSInt &Result) {
  Result = Value;
  ++Result;
  return Value < Result;
}

static bool areEquivalentNameSpecifier(const NestedNameSpecifier *Left,
                                       const NestedNameSpecifier *Right) {
  llvm::FoldingSetNodeID LeftID, RightID;
  Left->Profile(LeftID);
  Right->Profile(RightID);
  return LeftID == RightID;
}

static bool areEquivalentExpr(const Expr *Left, const Expr *Right) {
  if (!Left || !Right)
    return !Left && !Right;

  Left = Left->IgnoreParens();
  Right = Right->IgnoreParens();

  // Compare classes.
  if (Left->getStmtClass() != Right->getStmtClass())
    return false;

  // Compare children.
  Expr::const_child_iterator LeftIter = Left->child_begin();
  Expr::const_child_iterator RightIter = Right->child_begin();
  while (LeftIter != Left->child_end() && RightIter != Right->child_end()) {
    if (!areEquivalentExpr(dyn_cast<Expr>(*LeftIter),
                           dyn_cast<Expr>(*RightIter)))
      return false;
    ++LeftIter;
    ++RightIter;
  }
  if (LeftIter != Left->child_end() || RightIter != Right->child_end())
    return false;

  // Perform extra checks.
  switch (Left->getStmtClass()) {
  default:
    return false;

  case Stmt::CharacterLiteralClass:
    return cast<CharacterLiteral>(Left)->getValue() ==
           cast<CharacterLiteral>(Right)->getValue();
  case Stmt::IntegerLiteralClass: {
    llvm::APInt LeftLit = cast<IntegerLiteral>(Left)->getValue();
    llvm::APInt RightLit = cast<IntegerLiteral>(Right)->getValue();
    return LeftLit.getBitWidth() == RightLit.getBitWidth() &&
           LeftLit == RightLit;
  }
  case Stmt::FloatingLiteralClass:
    return cast<FloatingLiteral>(Left)->getValue().bitwiseIsEqual(
        cast<FloatingLiteral>(Right)->getValue());
  case Stmt::StringLiteralClass:
    return cast<StringLiteral>(Left)->getBytes() ==
           cast<StringLiteral>(Right)->getBytes();

  case Stmt::DependentScopeDeclRefExprClass:
    if (cast<DependentScopeDeclRefExpr>(Left)->getDeclName() !=
        cast<DependentScopeDeclRefExpr>(Right)->getDeclName())
      return false;
    return areEquivalentNameSpecifier(
        cast<DependentScopeDeclRefExpr>(Left)->getQualifier(),
        cast<DependentScopeDeclRefExpr>(Right)->getQualifier());
  case Stmt::DeclRefExprClass:
    return cast<DeclRefExpr>(Left)->getDecl() ==
           cast<DeclRefExpr>(Right)->getDecl();
  case Stmt::MemberExprClass:
    return cast<MemberExpr>(Left)->getMemberDecl() ==
           cast<MemberExpr>(Right)->getMemberDecl();

  case Stmt::CStyleCastExprClass:
    return cast<CStyleCastExpr>(Left)->getTypeAsWritten() ==
           cast<CStyleCastExpr>(Right)->getTypeAsWritten();

  case Stmt::CallExprClass:
  case Stmt::ImplicitCastExprClass:
  case Stmt::ArraySubscriptExprClass:
    return true;

  case Stmt::UnaryOperatorClass:
    if (cast<UnaryOperator>(Left)->isIncrementDecrementOp())
      return false;
    return cast<UnaryOperator>(Left)->getOpcode() ==
           cast<UnaryOperator>(Right)->getOpcode();
  case Stmt::BinaryOperatorClass:
    return cast<BinaryOperator>(Left)->getOpcode() ==
           cast<BinaryOperator>(Right)->getOpcode();
  }
}

// For a given expression 'x', returns whether the ranges covered by the
// relational operators are equivalent (i.e.  x <= 4 is equivalent to x < 5).
static bool areEquivalentRanges(BinaryOperatorKind OpcodeLHS,
                                const APSInt &ValueLHS,
                                BinaryOperatorKind OpcodeRHS,
                                const APSInt &ValueRHS) {
  assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
         "Values must be ordered");
  // Handle the case where constants are the same: x <= 4  <==>  x <= 4.
  if (APSInt::compareValues(ValueLHS, ValueRHS) == 0)
    return OpcodeLHS == OpcodeRHS;

  // Handle the case where constants are off by one: x <= 4  <==>  x < 5.
  APSInt ValueLHS_plus1;
  return ((OpcodeLHS == BO_LE && OpcodeRHS == BO_LT) ||
          (OpcodeLHS == BO_GT && OpcodeRHS == BO_GE)) &&
         incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
         APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0;
}

// For a given expression 'x', returns whether the ranges covered by the
// relational operators are fully disjoint (i.e. x < 4  and  x > 7).
static bool areExclusiveRanges(BinaryOperatorKind OpcodeLHS,
                               const APSInt &ValueLHS,
                               BinaryOperatorKind OpcodeRHS,
                               const APSInt &ValueRHS) {
  assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
         "Values must be ordered");

  // Handle cases where the constants are the same.
  if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) {
    switch (OpcodeLHS) {
    case BO_EQ:
      return OpcodeRHS == BO_NE || OpcodeRHS == BO_GT || OpcodeRHS == BO_LT;
    case BO_NE:
      return OpcodeRHS == BO_EQ;
    case BO_LE:
      return OpcodeRHS == BO_GT;
    case BO_GE:
      return OpcodeRHS == BO_LT;
    case BO_LT:
      return OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE;
    case BO_GT:
      return OpcodeRHS == BO_EQ || OpcodeRHS == BO_LT || OpcodeRHS == BO_LE;
    default:
      return false;
    }
  }

  // Handle cases where the constants are different.
  if ((OpcodeLHS == BO_EQ || OpcodeLHS == BO_LT || OpcodeLHS == BO_LE) &&
      (OpcodeRHS == BO_EQ || OpcodeRHS == BO_GT || OpcodeRHS == BO_GE))
    return true;

  // Handle the case where constants are off by one: x > 5 && x < 6.
  APSInt ValueLHS_plus1;
  if (OpcodeLHS == BO_GT && OpcodeRHS == BO_LT &&
      incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
      APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0)
    return true;

  return false;
}

// Returns whether the ranges covered by the union of both relational
// expressions covers the whole domain (i.e. x < 10  and  x > 0).
static bool rangesFullyCoverDomain(BinaryOperatorKind OpcodeLHS,
                                   const APSInt &ValueLHS,
                                   BinaryOperatorKind OpcodeRHS,
                                   const APSInt &ValueRHS) {
  assert(APSInt::compareValues(ValueLHS, ValueRHS) <= 0 &&
         "Values must be ordered");

  // Handle cases where the constants are the same:  x < 5 || x >= 5.
  if (APSInt::compareValues(ValueLHS, ValueRHS) == 0) {
    switch (OpcodeLHS) {
    case BO_EQ:
      return OpcodeRHS == BO_NE;
    case BO_NE:
      return OpcodeRHS == BO_EQ;
    case BO_LE:
      return OpcodeRHS == BO_GT || OpcodeRHS == BO_GE;
    case BO_LT:
      return OpcodeRHS == BO_GE;
    case BO_GE:
      return OpcodeRHS == BO_LT || OpcodeRHS == BO_LE;
    case BO_GT:
      return OpcodeRHS == BO_LE;
    default:
      return false;
    }
  }

  // Handle the case where constants are off by one: x <= 4 || x >= 5.
  APSInt ValueLHS_plus1;
  if (OpcodeLHS == BO_LE && OpcodeRHS == BO_GE &&
      incrementWithoutOverflow(ValueLHS, ValueLHS_plus1) &&
      APSInt::compareValues(ValueLHS_plus1, ValueRHS) == 0)
    return true;

  // Handle cases where the constants are different: x > 4 || x <= 7.
  if ((OpcodeLHS == BO_GT || OpcodeLHS == BO_GE) &&
      (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE))
    return true;

  return false;
}

static bool rangeSubsumesRange(BinaryOperatorKind OpcodeLHS,
                               const APSInt &ValueLHS,
                               BinaryOperatorKind OpcodeRHS,
                               const APSInt &ValueRHS) {
  int Comparison = APSInt::compareValues(ValueLHS, ValueRHS);
  switch (OpcodeLHS) {
  case BO_EQ:
    return OpcodeRHS == BO_EQ && Comparison == 0;
  case BO_NE:
    return (OpcodeRHS == BO_NE && Comparison == 0) ||
           (OpcodeRHS == BO_EQ && Comparison != 0) ||
           (OpcodeRHS == BO_LT && Comparison >= 0) ||
           (OpcodeRHS == BO_LE && Comparison > 0) ||
           (OpcodeRHS == BO_GT && Comparison <= 0) ||
           (OpcodeRHS == BO_GE && Comparison < 0);

  case BO_LT:
    return ((OpcodeRHS == BO_LT && Comparison >= 0) ||
            (OpcodeRHS == BO_LE && Comparison > 0) ||
            (OpcodeRHS == BO_EQ && Comparison > 0));
  case BO_GT:
    return ((OpcodeRHS == BO_GT && Comparison <= 0) ||
            (OpcodeRHS == BO_GE && Comparison < 0) ||
            (OpcodeRHS == BO_EQ && Comparison < 0));
  case BO_LE:
    return (OpcodeRHS == BO_LT || OpcodeRHS == BO_LE || OpcodeRHS == BO_EQ) &&
           Comparison >= 0;
  case BO_GE:
    return (OpcodeRHS == BO_GT || OpcodeRHS == BO_GE || OpcodeRHS == BO_EQ) &&
           Comparison <= 0;
  default:
    return false;
  }
}

static void canonicalNegateExpr(BinaryOperatorKind &Opcode, APSInt &Value) {
  if (Opcode == BO_Sub) {
    Opcode = BO_Add;
    Value = -Value;
  }
}

AST_MATCHER(Expr, isIntegerConstantExpr) {
  if (Node.isInstantiationDependent())
    return false;
  return Node.isIntegerConstantExpr(Finder->getASTContext());
}

// Returns a matcher for integer constant expression.
static ast_matchers::internal::Matcher<Expr>
matchIntegerConstantExpr(StringRef Id) {
  std::string CstId = (Id + "-const").str();
  return expr(isIntegerConstantExpr()).bind(CstId);
}

// Retrieve the integer value matched by 'matchIntegerConstantExpr' with name
// 'Id' and store it into 'Value'.
static bool retrieveIntegerConstantExpr(const MatchFinder::MatchResult &Result,
                                        StringRef Id, APSInt &Value) {
  std::string CstId = (Id + "-const").str();
  const auto *CstExpr = Result.Nodes.getNodeAs<Expr>(CstId);
  return CstExpr && CstExpr->isIntegerConstantExpr(Value, *Result.Context);
}

// Returns a matcher for a symbolic expression (any expression except ingeter
// constant expression).
static ast_matchers::internal::Matcher<Expr> matchSymbolicExpr(StringRef Id) {
  std::string SymId = (Id + "-sym").str();
  return ignoringParenImpCasts(
      expr(unless(isIntegerConstantExpr())).bind(SymId));
}

// Retrieve the expression matched by 'matchSymbolicExpr' with name 'Id' and
// store it into 'SymExpr'.
static bool retrieveSymbolicExpr(const MatchFinder::MatchResult &Result,
                                 StringRef Id, const Expr *&SymExpr) {
  std::string SymId = (Id + "-sym").str();
  if (const auto *Node = Result.Nodes.getNodeAs<Expr>(SymId)) {
    SymExpr = Node;
    return true;
  }
  return false;
}

// Match a binary operator between a symbolic expression and an integer constant
// expression.
static ast_matchers::internal::Matcher<Expr>
matchBinOpIntegerConstantExpr(StringRef Id) {
  const auto BinOpCstExpr =
      expr(
          anyOf(binaryOperator(anyOf(hasOperatorName("+"), hasOperatorName("|"),
                                     hasOperatorName("&")),
                               hasEitherOperand(matchSymbolicExpr(Id)),
                               hasEitherOperand(matchIntegerConstantExpr(Id))),
                binaryOperator(hasOperatorName("-"),
                               hasLHS(matchSymbolicExpr(Id)),
                               hasRHS(matchIntegerConstantExpr(Id)))))
          .bind(Id);
  return ignoringParenImpCasts(BinOpCstExpr);
}

// Retrieve sub-expressions matched by 'matchBinOpIntegerConstantExpr' with
// name 'Id'.
static bool
retrieveBinOpIntegerConstantExpr(const MatchFinder::MatchResult &Result,
                                 StringRef Id, BinaryOperatorKind &Opcode,
                                 const Expr *&Symbol, APSInt &Value) {
  if (const auto *BinExpr = Result.Nodes.getNodeAs<BinaryOperator>(Id)) {
    Opcode = BinExpr->getOpcode();
    return retrieveSymbolicExpr(Result, Id, Symbol) &&
           retrieveIntegerConstantExpr(Result, Id, Value);
  }
  return false;
}

// Matches relational expression: 'Expr <op> k' (i.e. x < 2, x != 3, 12 <= x).
static ast_matchers::internal::Matcher<Expr>
matchRelationalIntegerConstantExpr(StringRef Id) {
  std::string CastId = (Id + "-cast").str();
  std::string SwapId = (Id + "-swap").str();
  std::string NegateId = (Id + "-negate").str();

  const auto RelationalExpr = ignoringParenImpCasts(binaryOperator(
      isComparisonOperator(), expr().bind(Id),
      anyOf(allOf(hasLHS(matchSymbolicExpr(Id)),
                  hasRHS(matchIntegerConstantExpr(Id))),
            allOf(hasLHS(matchIntegerConstantExpr(Id)),
                  hasRHS(matchSymbolicExpr(Id)), expr().bind(SwapId)))));

  // A cast can be matched as a comparator to zero. (i.e. if (x) is equivalent
  // to if (x != 0)).
  const auto CastExpr =
      implicitCastExpr(hasCastKind(CK_IntegralToBoolean),
                       hasSourceExpression(matchSymbolicExpr(Id)))
          .bind(CastId);

  const auto NegateRelationalExpr =
      unaryOperator(hasOperatorName("!"),
                    hasUnaryOperand(anyOf(CastExpr, RelationalExpr)))
          .bind(NegateId);

  const auto NegateNegateRelationalExpr =
      unaryOperator(hasOperatorName("!"),
                    hasUnaryOperand(unaryOperator(
                        hasOperatorName("!"),
                        hasUnaryOperand(anyOf(CastExpr, RelationalExpr)))));

  return anyOf(RelationalExpr, CastExpr, NegateRelationalExpr,
               NegateNegateRelationalExpr);
}

// Retrieve sub-expressions matched by 'matchRelationalIntegerConstantExpr' with
// name 'Id'.
static bool
retrieveRelationalIntegerConstantExpr(const MatchFinder::MatchResult &Result,
                                      StringRef Id, const Expr *&OperandExpr,
                                      BinaryOperatorKind &Opcode,
                                      const Expr *&Symbol, APSInt &Value) {
  std::string CastId = (Id + "-cast").str();
  std::string SwapId = (Id + "-swap").str();
  std::string NegateId = (Id + "-negate").str();

  if (const auto *Bin = Result.Nodes.getNodeAs<BinaryOperator>(Id)) {
    // Operand received with explicit comparator.
    Opcode = Bin->getOpcode();
    OperandExpr = Bin;
    if (!retrieveIntegerConstantExpr(Result, Id, Value))
      return false;
  } else if (const auto *Cast = Result.Nodes.getNodeAs<CastExpr>(CastId)) {
    // Operand received with implicit comparator (cast).
    Opcode = BO_NE;
    OperandExpr = Cast;
    Value = APSInt(32, false);
  } else {
    return false;
  }

  if (!retrieveSymbolicExpr(Result, Id, Symbol))
    return false;

  if (Result.Nodes.getNodeAs<Expr>(SwapId))
    Opcode = BinaryOperator::reverseComparisonOp(Opcode);
  if (Result.Nodes.getNodeAs<Expr>(NegateId))
    Opcode = BinaryOperator::negateComparisonOp(Opcode);

  return true;
}

AST_MATCHER(BinaryOperator, operandsAreEquivalent) {
  return areEquivalentExpr(Node.getLHS(), Node.getRHS());
}

AST_MATCHER(ConditionalOperator, expressionsAreEquivalent) {
  return areEquivalentExpr(Node.getTrueExpr(), Node.getFalseExpr());
}

AST_MATCHER(CallExpr, parametersAreEquivalent) {
  return Node.getNumArgs() == 2 &&
         areEquivalentExpr(Node.getArg(0), Node.getArg(1));
}

AST_MATCHER(BinaryOperator, binaryOperatorIsInMacro) {
  return Node.getOperatorLoc().isMacroID();
}

AST_MATCHER(ConditionalOperator, conditionalOperatorIsInMacro) {
  return Node.getQuestionLoc().isMacroID() || Node.getColonLoc().isMacroID();
}

AST_MATCHER(Expr, isMacro) { return Node.getExprLoc().isMacroID(); }

AST_MATCHER_P(Expr, expandedByMacro, std::set<std::string>, Names) {
  const SourceManager &SM = Finder->getASTContext().getSourceManager();
  const LangOptions &LO = Finder->getASTContext().getLangOpts();
  SourceLocation Loc = Node.getExprLoc();
  while (Loc.isMacroID()) {
    std::string MacroName = Lexer::getImmediateMacroName(Loc, SM, LO);
    if (Names.find(MacroName) != Names.end())
      return true;
    Loc = SM.getImmediateMacroCallerLoc(Loc);
  }
  return false;
}

void RedundantExpressionCheck::registerMatchers(MatchFinder *Finder) {
  const auto AnyLiteralExpr = ignoringParenImpCasts(
      anyOf(cxxBoolLiteral(), characterLiteral(), integerLiteral()));

  std::vector<std::string> MacroNames =
      utils::options::parseStringList(KnownBannedMacroNames);
  std::set<std::string> Names(MacroNames.begin(), MacroNames.end());

  const auto BannedIntegerLiteral = integerLiteral(expandedByMacro(Names));

  Finder->addMatcher(
      binaryOperator(anyOf(hasOperatorName("-"), hasOperatorName("/"),
                           hasOperatorName("%"), hasOperatorName("|"),
                           hasOperatorName("&"), hasOperatorName("^"),
                           matchers::isComparisonOperator(),
                           hasOperatorName("&&"), hasOperatorName("||"),
                           hasOperatorName("=")),
                     operandsAreEquivalent(),
                     // Filter noisy false positives.
                     unless(isInTemplateInstantiation()),
                     unless(binaryOperatorIsInMacro()),
                     unless(hasType(realFloatingPointType())),
                     unless(hasEitherOperand(hasType(realFloatingPointType()))),
                     unless(hasLHS(AnyLiteralExpr)),
                     unless(hasDescendant(BannedIntegerLiteral)))
          .bind("binary"),
      this);

  Finder->addMatcher(
      conditionalOperator(expressionsAreEquivalent(),
                          // Filter noisy false positives.
                          unless(conditionalOperatorIsInMacro()),
                          unless(hasTrueExpression(AnyLiteralExpr)),
                          unless(isInTemplateInstantiation()))
          .bind("cond"),
      this);

  Finder->addMatcher(
      cxxOperatorCallExpr(
          anyOf(
              hasOverloadedOperatorName("-"), hasOverloadedOperatorName("/"),
              hasOverloadedOperatorName("%"), hasOverloadedOperatorName("|"),
              hasOverloadedOperatorName("&"), hasOverloadedOperatorName("^"),
              hasOverloadedOperatorName("=="), hasOverloadedOperatorName("!="),
              hasOverloadedOperatorName("<"), hasOverloadedOperatorName("<="),
              hasOverloadedOperatorName(">"), hasOverloadedOperatorName(">="),
              hasOverloadedOperatorName("&&"), hasOverloadedOperatorName("||"),
              hasOverloadedOperatorName("=")),
          parametersAreEquivalent(),
          // Filter noisy false positives.
          unless(isMacro()), unless(isInTemplateInstantiation()))
          .bind("call"),
      this);

  // Match common expressions and apply more checks to find redundant
  // sub-expressions.
  //   a) Expr <op> K1 == K2
  //   b) Expr <op> K1 == Expr
  //   c) Expr <op> K1 == Expr <op> K2
  // see: 'checkArithmeticExpr' and 'checkBitwiseExpr'
  const auto BinOpCstLeft = matchBinOpIntegerConstantExpr("lhs");
  const auto BinOpCstRight = matchBinOpIntegerConstantExpr("rhs");
  const auto CstRight = matchIntegerConstantExpr("rhs");
  const auto SymRight = matchSymbolicExpr("rhs");

  // Match expressions like: x <op> 0xFF == 0xF00.
  Finder->addMatcher(binaryOperator(isComparisonOperator(),
                                    hasEitherOperand(BinOpCstLeft),
                                    hasEitherOperand(CstRight))
                         .bind("binop-const-compare-to-const"),
                     this);

  // Match expressions like: x <op> 0xFF == x.
  Finder->addMatcher(
      binaryOperator(isComparisonOperator(),
                     anyOf(allOf(hasLHS(BinOpCstLeft), hasRHS(SymRight)),
                           allOf(hasLHS(SymRight), hasRHS(BinOpCstLeft))))
          .bind("binop-const-compare-to-sym"),
      this);

  // Match expressions like: x <op> 10 == x <op> 12.
  Finder->addMatcher(binaryOperator(isComparisonOperator(),
                                    hasLHS(BinOpCstLeft), hasRHS(BinOpCstRight),
                                    // Already reported as redundant.
                                    unless(operandsAreEquivalent()))
                         .bind("binop-const-compare-to-binop-const"),
                     this);

  // Match relational expressions combined with logical operators and find
  // redundant sub-expressions.
  // see: 'checkRelationalExpr'

  // Match expressions like: x < 2 && x > 2.
  const auto ComparisonLeft = matchRelationalIntegerConstantExpr("lhs");
  const auto ComparisonRight = matchRelationalIntegerConstantExpr("rhs");
  Finder->addMatcher(
      binaryOperator(anyOf(hasOperatorName("||"), hasOperatorName("&&")),
                     hasLHS(ComparisonLeft), hasRHS(ComparisonRight),
                     // Already reported as redundant.
                     unless(operandsAreEquivalent()))
          .bind("comparisons-of-symbol-and-const"),
      this);
}

void RedundantExpressionCheck::checkArithmeticExpr(
    const MatchFinder::MatchResult &Result) {
  APSInt LhsValue, RhsValue;
  const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr;
  BinaryOperatorKind LhsOpcode, RhsOpcode;

  if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
          "binop-const-compare-to-sym")) {
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();
    if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
                                          LhsValue) ||
        !retrieveSymbolicExpr(Result, "rhs", RhsSymbol) ||
        !areEquivalentExpr(LhsSymbol, RhsSymbol))
      return;

    // Check expressions: x + k == x  or  x - k == x.
    if (LhsOpcode == BO_Add || LhsOpcode == BO_Sub) {
      if ((LhsValue != 0 && Opcode == BO_EQ) ||
          (LhsValue == 0 && Opcode == BO_NE))
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always false");
      else if ((LhsValue == 0 && Opcode == BO_EQ) ||
               (LhsValue != 0 && Opcode == BO_NE))
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always true");
    }
  } else if (const auto *ComparisonOperator =
                 Result.Nodes.getNodeAs<BinaryOperator>(
                     "binop-const-compare-to-binop-const")) {
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();

    if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
                                          LhsValue) ||
        !retrieveBinOpIntegerConstantExpr(Result, "rhs", RhsOpcode, RhsSymbol,
                                          RhsValue) ||
        !areEquivalentExpr(LhsSymbol, RhsSymbol))
      return;

    canonicalNegateExpr(LhsOpcode, LhsValue);
    canonicalNegateExpr(RhsOpcode, RhsValue);

    // Check expressions: x + 1 == x + 2  or  x + 1 != x + 2.
    if (LhsOpcode == BO_Add && RhsOpcode == BO_Add) {
      if ((Opcode == BO_EQ && APSInt::compareValues(LhsValue, RhsValue) == 0) ||
          (Opcode == BO_NE && APSInt::compareValues(LhsValue, RhsValue) != 0)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always true");
      } else if ((Opcode == BO_EQ &&
                  APSInt::compareValues(LhsValue, RhsValue) != 0) ||
                 (Opcode == BO_NE &&
                  APSInt::compareValues(LhsValue, RhsValue) == 0)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always false");
      }
    }
  }
}

void RedundantExpressionCheck::checkBitwiseExpr(
    const MatchFinder::MatchResult &Result) {
  if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
          "binop-const-compare-to-const")) {
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();

    APSInt LhsValue, RhsValue;
    const Expr *LhsSymbol = nullptr;
    BinaryOperatorKind LhsOpcode;
    if (!retrieveBinOpIntegerConstantExpr(Result, "lhs", LhsOpcode, LhsSymbol,
                                          LhsValue) ||
        !retrieveIntegerConstantExpr(Result, "rhs", RhsValue))
      return;

    uint64_t LhsConstant = LhsValue.getZExtValue();
    uint64_t RhsConstant = RhsValue.getZExtValue();
    SourceLocation Loc = ComparisonOperator->getOperatorLoc();

    // Check expression: x & k1 == k2  (i.e. x & 0xFF == 0xF00)
    if (LhsOpcode == BO_And && (LhsConstant & RhsConstant) != RhsConstant) {
      if (Opcode == BO_EQ)
        diag(Loc, "logical expression is always false");
      else if (Opcode == BO_NE)
        diag(Loc, "logical expression is always true");
    }

    // Check expression: x | k1 == k2  (i.e. x | 0xFF == 0xF00)
    if (LhsOpcode == BO_Or && (LhsConstant | RhsConstant) != RhsConstant) {
      if (Opcode == BO_EQ)
        diag(Loc, "logical expression is always false");
      else if (Opcode == BO_NE)
        diag(Loc, "logical expression is always true");
    }
  }
}

void RedundantExpressionCheck::checkRelationalExpr(
    const MatchFinder::MatchResult &Result) {
  if (const auto *ComparisonOperator = Result.Nodes.getNodeAs<BinaryOperator>(
          "comparisons-of-symbol-and-const")) {
    // Matched expressions are: (x <op> k1) <REL> (x <op> k2).
    BinaryOperatorKind Opcode = ComparisonOperator->getOpcode();

    const Expr *LhsExpr = nullptr, *RhsExpr = nullptr;
    APSInt LhsValue, RhsValue;
    const Expr *LhsSymbol = nullptr, *RhsSymbol = nullptr;
    BinaryOperatorKind LhsOpcode, RhsOpcode;
    if (!retrieveRelationalIntegerConstantExpr(
            Result, "lhs", LhsExpr, LhsOpcode, LhsSymbol, LhsValue) ||
        !retrieveRelationalIntegerConstantExpr(
            Result, "rhs", RhsExpr, RhsOpcode, RhsSymbol, RhsValue) ||
        !areEquivalentExpr(LhsSymbol, RhsSymbol))
      return;

    // Bring to a canonical form: smallest constant must be on the left side.
    if (APSInt::compareValues(LhsValue, RhsValue) > 0) {
      std::swap(LhsExpr, RhsExpr);
      std::swap(LhsValue, RhsValue);
      std::swap(LhsSymbol, RhsSymbol);
      std::swap(LhsOpcode, RhsOpcode);
    }

    if ((Opcode == BO_LAnd || Opcode == BO_LOr) &&
        areEquivalentRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
      diag(ComparisonOperator->getOperatorLoc(),
           "equivalent expression on both side of logical operator");
      return;
    }

    if (Opcode == BO_LAnd) {
      if (areExclusiveRanges(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always false");
      } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(LhsExpr->getExprLoc(), "expression is redundant");
      } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) {
        diag(RhsExpr->getExprLoc(), "expression is redundant");
      }
    }

    if (Opcode == BO_LOr) {
      if (rangesFullyCoverDomain(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(ComparisonOperator->getOperatorLoc(),
             "logical expression is always true");
      } else if (rangeSubsumesRange(LhsOpcode, LhsValue, RhsOpcode, RhsValue)) {
        diag(RhsExpr->getExprLoc(), "expression is redundant");
      } else if (rangeSubsumesRange(RhsOpcode, RhsValue, LhsOpcode, LhsValue)) {
        diag(LhsExpr->getExprLoc(), "expression is redundant");
      }
    }
  }
}

void RedundantExpressionCheck::check(const MatchFinder::MatchResult &Result) {
  if (const auto *BinOp = Result.Nodes.getNodeAs<BinaryOperator>("binary"))
    diag(BinOp->getOperatorLoc(), "both side of operator are equivalent");
  if (const auto *CondOp = Result.Nodes.getNodeAs<ConditionalOperator>("cond"))
    diag(CondOp->getColonLoc(), "'true' and 'false' expression are equivalent");
  if (const auto *Call = Result.Nodes.getNodeAs<CXXOperatorCallExpr>("call"))
    diag(Call->getOperatorLoc(),
         "both side of overloaded operator are equivalent");

  checkArithmeticExpr(Result);
  checkBitwiseExpr(Result);
  checkRelationalExpr(Result);
}

} // namespace misc
} // namespace tidy
} // namespace clang