1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
//===- SequencedItemStream.h ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEBUGINFO_MSF_SEQUENCEDITEMSTREAM_H
#define LLVM_DEBUGINFO_MSF_SEQUENCEDITEMSTREAM_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/DebugInfo/MSF/MSFError.h"
#include "llvm/DebugInfo/MSF/StreamInterface.h"
#include "llvm/Support/Error.h"
#include <cstddef>
#include <cstdint>
namespace llvm {
namespace msf {
template <typename T> struct SequencedItemTraits {
static size_t length(const T &Item) = delete;
static ArrayRef<uint8_t> bytes(const T &Item) = delete;
};
/// SequencedItemStream represents a sequence of objects stored in a
/// standard container but for which it is useful to view as a stream of
/// contiguous bytes. An example of this might be if you have a std::vector
/// of TPI records, where each record contains a byte sequence that
/// represents that one record serialized, but where each consecutive item
/// might not be allocated immediately after the previous item. Using a
/// SequencedItemStream, we can adapt the VarStreamArray class to trivially
/// extract one item at a time, allowing the data to be used anywhere a
/// VarStreamArray could be used.
template <typename T, typename Traits = SequencedItemTraits<T>>
class SequencedItemStream : public ReadableStream {
public:
SequencedItemStream() = default;
Error readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) const override {
auto ExpectedIndex = translateOffsetIndex(Offset);
if (!ExpectedIndex)
return ExpectedIndex.takeError();
const auto &Item = Items[*ExpectedIndex];
if (Size > Traits::length(Item))
return make_error<MSFError>(msf_error_code::insufficient_buffer);
Buffer = Traits::bytes(Item).take_front(Size);
return Error::success();
}
Error readLongestContiguousChunk(uint32_t Offset,
ArrayRef<uint8_t> &Buffer) const override {
auto ExpectedIndex = translateOffsetIndex(Offset);
if (!ExpectedIndex)
return ExpectedIndex.takeError();
Buffer = Traits::bytes(Items[*ExpectedIndex]);
return Error::success();
}
void setItems(ArrayRef<T> ItemArray) { Items = ItemArray; }
uint32_t getLength() const override {
uint32_t Size = 0;
for (const auto &Item : Items)
Size += Traits::length(Item);
return Size;
}
private:
Expected<uint32_t> translateOffsetIndex(uint32_t Offset) const {
uint32_t CurrentOffset = 0;
uint32_t CurrentIndex = 0;
for (const auto &Item : Items) {
if (CurrentOffset >= Offset)
break;
CurrentOffset += Traits::length(Item);
++CurrentIndex;
}
if (CurrentOffset != Offset)
return make_error<MSFError>(msf_error_code::insufficient_buffer);
return CurrentIndex;
}
ArrayRef<T> Items;
};
} // end namespace msf
} // end namespace llvm
#endif // LLVM_DEBUGINFO_MSF_SEQUENCEDITEMSTREAM_H
|