File: RPCUtils.h

package info (click to toggle)
llvm-toolchain-4.0 1%3A4.0.1-10~deb9u2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 493,332 kB
  • sloc: cpp: 2,698,100; ansic: 552,773; asm: 128,821; python: 121,589; objc: 105,054; sh: 21,174; lisp: 6,758; ml: 5,532; perl: 5,311; pascal: 5,245; makefile: 2,083; cs: 1,868; xml: 686; php: 212; csh: 117
file content (1449 lines) | stat: -rw-r--r-- 50,408 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
//===------- RPCUTils.h - Utilities for building RPC APIs -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Utilities to support construction of simple RPC APIs.
//
// The RPC utilities aim for ease of use (minimal conceptual overhead) for C++
// programmers, high performance, low memory overhead, and efficient use of the
// communications channel.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
#define LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H

#include <map>
#include <thread>
#include <vector>

#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/ExecutionEngine/Orc/RPCSerialization.h"

#ifdef _MSC_VER
// concrt.h depends on eh.h for __uncaught_exception declaration
// even if we disable exceptions.
#include <eh.h>

// Disable warnings from ppltasks.h transitively included by <future>.
#pragma warning(push)
#pragma warning(disable : 4530)
#pragma warning(disable : 4062)
#endif

#include <future>

#ifdef _MSC_VER
#pragma warning(pop)
#endif

namespace llvm {
namespace orc {
namespace rpc {

template <typename DerivedFunc, typename FnT> class Function;

// RPC Function class.
// DerivedFunc should be a user defined class with a static 'getName()' method
// returning a const char* representing the function's name.
template <typename DerivedFunc, typename RetT, typename... ArgTs>
class Function<DerivedFunc, RetT(ArgTs...)> {
public:
  /// User defined function type.
  using Type = RetT(ArgTs...);

  /// Return type.
  using ReturnType = RetT;

  /// Returns the full function prototype as a string.
  static const char *getPrototype() {
    std::lock_guard<std::mutex> Lock(NameMutex);
    if (Name.empty())
      raw_string_ostream(Name)
          << RPCTypeName<RetT>::getName() << " " << DerivedFunc::getName()
          << "(" << llvm::orc::rpc::RPCTypeNameSequence<ArgTs...>() << ")";
    return Name.data();
  }

private:
  static std::mutex NameMutex;
  static std::string Name;
};

template <typename DerivedFunc, typename RetT, typename... ArgTs>
std::mutex Function<DerivedFunc, RetT(ArgTs...)>::NameMutex;

template <typename DerivedFunc, typename RetT, typename... ArgTs>
std::string Function<DerivedFunc, RetT(ArgTs...)>::Name;

/// Provides a typedef for a tuple containing the decayed argument types.
template <typename T> class FunctionArgsTuple;

template <typename RetT, typename... ArgTs>
class FunctionArgsTuple<RetT(ArgTs...)> {
public:
  using Type = std::tuple<typename std::decay<
      typename std::remove_reference<ArgTs>::type>::type...>;
};

/// Allocates RPC function ids during autonegotiation.
/// Specializations of this class must provide four members:
///
/// static T getInvalidId():
///   Should return a reserved id that will be used to represent missing
/// functions during autonegotiation.
///
/// static T getResponseId():
///   Should return a reserved id that will be used to send function responses
/// (return values).
///
/// static T getNegotiateId():
///   Should return a reserved id for the negotiate function, which will be used
/// to negotiate ids for user defined functions.
///
/// template <typename Func> T allocate():
///   Allocate a unique id for function Func.
template <typename T, typename = void> class RPCFunctionIdAllocator;

/// This specialization of RPCFunctionIdAllocator provides a default
/// implementation for integral types.
template <typename T>
class RPCFunctionIdAllocator<
    T, typename std::enable_if<std::is_integral<T>::value>::type> {
public:
  static T getInvalidId() { return T(0); }
  static T getResponseId() { return T(1); }
  static T getNegotiateId() { return T(2); }

  template <typename Func> T allocate() { return NextId++; }

private:
  T NextId = 3;
};

namespace detail {

// FIXME: Remove MSVCPError/MSVCPExpected once MSVC's future implementation
//        supports classes without default constructors.
#ifdef _MSC_VER

namespace msvc_hacks {

// Work around MSVC's future implementation's use of default constructors:
// A default constructed value in the promise will be overwritten when the
// real error is set - so the default constructed Error has to be checked
// already.
class MSVCPError : public Error {
public:
  MSVCPError() { (void)!!*this; }

  MSVCPError(MSVCPError &&Other) : Error(std::move(Other)) {}

  MSVCPError &operator=(MSVCPError Other) {
    Error::operator=(std::move(Other));
    return *this;
  }

  MSVCPError(Error Err) : Error(std::move(Err)) {}
};

// Work around MSVC's future implementation, similar to MSVCPError.
template <typename T> class MSVCPExpected : public Expected<T> {
public:
  MSVCPExpected()
      : Expected<T>(make_error<StringError>("", inconvertibleErrorCode())) {
    consumeError(this->takeError());
  }

  MSVCPExpected(MSVCPExpected &&Other) : Expected<T>(std::move(Other)) {}

  MSVCPExpected &operator=(MSVCPExpected &&Other) {
    Expected<T>::operator=(std::move(Other));
    return *this;
  }

  MSVCPExpected(Error Err) : Expected<T>(std::move(Err)) {}

  template <typename OtherT>
  MSVCPExpected(
      OtherT &&Val,
      typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
          nullptr)
      : Expected<T>(std::move(Val)) {}

  template <class OtherT>
  MSVCPExpected(
      Expected<OtherT> &&Other,
      typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
          nullptr)
      : Expected<T>(std::move(Other)) {}

  template <class OtherT>
  explicit MSVCPExpected(
      Expected<OtherT> &&Other,
      typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
          nullptr)
      : Expected<T>(std::move(Other)) {}
};

} // end namespace msvc_hacks

#endif // _MSC_VER

// ResultTraits provides typedefs and utilities specific to the return type
// of functions.
template <typename RetT> class ResultTraits {
public:
  // The return type wrapped in llvm::Expected.
  using ErrorReturnType = Expected<RetT>;

#ifdef _MSC_VER
  // The ErrorReturnType wrapped in a std::promise.
  using ReturnPromiseType = std::promise<msvc_hacks::MSVCPExpected<RetT>>;

  // The ErrorReturnType wrapped in a std::future.
  using ReturnFutureType = std::future<msvc_hacks::MSVCPExpected<RetT>>;
#else
  // The ErrorReturnType wrapped in a std::promise.
  using ReturnPromiseType = std::promise<ErrorReturnType>;

  // The ErrorReturnType wrapped in a std::future.
  using ReturnFutureType = std::future<ErrorReturnType>;
#endif

  // Create a 'blank' value of the ErrorReturnType, ready and safe to
  // overwrite.
  static ErrorReturnType createBlankErrorReturnValue() {
    return ErrorReturnType(RetT());
  }

  // Consume an abandoned ErrorReturnType.
  static void consumeAbandoned(ErrorReturnType RetOrErr) {
    consumeError(RetOrErr.takeError());
  }
};

// ResultTraits specialization for void functions.
template <> class ResultTraits<void> {
public:
  // For void functions, ErrorReturnType is llvm::Error.
  using ErrorReturnType = Error;

#ifdef _MSC_VER
  // The ErrorReturnType wrapped in a std::promise.
  using ReturnPromiseType = std::promise<msvc_hacks::MSVCPError>;

  // The ErrorReturnType wrapped in a std::future.
  using ReturnFutureType = std::future<msvc_hacks::MSVCPError>;
#else
  // The ErrorReturnType wrapped in a std::promise.
  using ReturnPromiseType = std::promise<ErrorReturnType>;

  // The ErrorReturnType wrapped in a std::future.
  using ReturnFutureType = std::future<ErrorReturnType>;
#endif

  // Create a 'blank' value of the ErrorReturnType, ready and safe to
  // overwrite.
  static ErrorReturnType createBlankErrorReturnValue() {
    return ErrorReturnType::success();
  }

  // Consume an abandoned ErrorReturnType.
  static void consumeAbandoned(ErrorReturnType Err) {
    consumeError(std::move(Err));
  }
};

// ResultTraits<Error> is equivalent to ResultTraits<void>. This allows
// handlers for void RPC functions to return either void (in which case they
// implicitly succeed) or Error (in which case their error return is
// propagated). See usage in HandlerTraits::runHandlerHelper.
template <> class ResultTraits<Error> : public ResultTraits<void> {};

// ResultTraits<Expected<T>> is equivalent to ResultTraits<T>. This allows
// handlers for RPC functions returning a T to return either a T (in which
// case they implicitly succeed) or Expected<T> (in which case their error
// return is propagated). See usage in HandlerTraits::runHandlerHelper.
template <typename RetT>
class ResultTraits<Expected<RetT>> : public ResultTraits<RetT> {};

// Send a response of the given wire return type (WireRetT) over the
// channel, with the given sequence number.
template <typename WireRetT, typename HandlerRetT, typename ChannelT,
          typename FunctionIdT, typename SequenceNumberT>
static Error respond(ChannelT &C, const FunctionIdT &ResponseId,
                     SequenceNumberT SeqNo, Expected<HandlerRetT> ResultOrErr) {
  // If this was an error bail out.
  // FIXME: Send an "error" message to the client if this is not a channel
  //        failure?
  if (auto Err = ResultOrErr.takeError())
    return Err;

  // Open the response message.
  if (auto Err = C.startSendMessage(ResponseId, SeqNo))
    return Err;

  // Serialize the result.
  if (auto Err =
          SerializationTraits<ChannelT, WireRetT, HandlerRetT>::serialize(
              C, *ResultOrErr))
    return Err;

  // Close the response message.
  return C.endSendMessage();
}

// Send an empty response message on the given channel to indicate that
// the handler ran.
template <typename WireRetT, typename ChannelT, typename FunctionIdT,
          typename SequenceNumberT>
static Error respond(ChannelT &C, const FunctionIdT &ResponseId,
                     SequenceNumberT SeqNo, Error Err) {
  if (Err)
    return Err;
  if (auto Err2 = C.startSendMessage(ResponseId, SeqNo))
    return Err2;
  return C.endSendMessage();
}

// Converts a given type to the equivalent error return type.
template <typename T> class WrappedHandlerReturn {
public:
  using Type = Expected<T>;
};

template <typename T> class WrappedHandlerReturn<Expected<T>> {
public:
  using Type = Expected<T>;
};

template <> class WrappedHandlerReturn<void> {
public:
  using Type = Error;
};

template <> class WrappedHandlerReturn<Error> {
public:
  using Type = Error;
};

template <> class WrappedHandlerReturn<ErrorSuccess> {
public:
  using Type = Error;
};

// This template class provides utilities related to RPC function handlers.
// The base case applies to non-function types (the template class is
// specialized for function types) and inherits from the appropriate
// speciilization for the given non-function type's call operator.
template <typename HandlerT>
class HandlerTraits : public HandlerTraits<decltype(
                          &std::remove_reference<HandlerT>::type::operator())> {
};

// Traits for handlers with a given function type.
template <typename RetT, typename... ArgTs>
class HandlerTraits<RetT(ArgTs...)> {
public:
  // Function type of the handler.
  using Type = RetT(ArgTs...);

  // Return type of the handler.
  using ReturnType = RetT;

  // A std::tuple wrapping the handler arguments.
  using ArgStorage = typename FunctionArgsTuple<RetT(ArgTs...)>::Type;

  // Call the given handler with the given arguments.
  template <typename HandlerT>
  static typename WrappedHandlerReturn<RetT>::Type
  unpackAndRun(HandlerT &Handler, ArgStorage &Args) {
    return unpackAndRunHelper(Handler, Args,
                              llvm::index_sequence_for<ArgTs...>());
  }

  // Call the given handler with the given arguments.
  template <typename HandlerT>
  static typename std::enable_if<
      std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
      Error>::type
  run(HandlerT &Handler, ArgTs &&... Args) {
    Handler(std::move(Args)...);
    return Error::success();
  }

  template <typename HandlerT>
  static typename std::enable_if<
      !std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
      typename HandlerTraits<HandlerT>::ReturnType>::type
  run(HandlerT &Handler, ArgTs... Args) {
    return Handler(std::move(Args)...);
  }

  // Serialize arguments to the channel.
  template <typename ChannelT, typename... CArgTs>
  static Error serializeArgs(ChannelT &C, const CArgTs... CArgs) {
    return SequenceSerialization<ChannelT, ArgTs...>::serialize(C, CArgs...);
  }

  // Deserialize arguments from the channel.
  template <typename ChannelT, typename... CArgTs>
  static Error deserializeArgs(ChannelT &C, std::tuple<CArgTs...> &Args) {
    return deserializeArgsHelper(C, Args,
                                 llvm::index_sequence_for<CArgTs...>());
  }

private:
  template <typename ChannelT, typename... CArgTs, size_t... Indexes>
  static Error deserializeArgsHelper(ChannelT &C, std::tuple<CArgTs...> &Args,
                                     llvm::index_sequence<Indexes...> _) {
    return SequenceSerialization<ChannelT, ArgTs...>::deserialize(
        C, std::get<Indexes>(Args)...);
  }

  template <typename HandlerT, size_t... Indexes>
  static typename WrappedHandlerReturn<
      typename HandlerTraits<HandlerT>::ReturnType>::Type
  unpackAndRunHelper(HandlerT &Handler, ArgStorage &Args,
                     llvm::index_sequence<Indexes...>) {
    return run(Handler, std::move(std::get<Indexes>(Args))...);
  }
};

// Handler traits for class methods (especially call operators for lambdas).
template <typename Class, typename RetT, typename... ArgTs>
class HandlerTraits<RetT (Class::*)(ArgTs...)>
    : public HandlerTraits<RetT(ArgTs...)> {};

// Handler traits for const class methods (especially call operators for
// lambdas).
template <typename Class, typename RetT, typename... ArgTs>
class HandlerTraits<RetT (Class::*)(ArgTs...) const>
    : public HandlerTraits<RetT(ArgTs...)> {};

// Utility to peel the Expected wrapper off a response handler error type.
template <typename HandlerT> class ResponseHandlerArg;

template <typename ArgT> class ResponseHandlerArg<Error(Expected<ArgT>)> {
public:
  using ArgType = Expected<ArgT>;
  using UnwrappedArgType = ArgT;
};

template <typename ArgT>
class ResponseHandlerArg<ErrorSuccess(Expected<ArgT>)> {
public:
  using ArgType = Expected<ArgT>;
  using UnwrappedArgType = ArgT;
};

template <> class ResponseHandlerArg<Error(Error)> {
public:
  using ArgType = Error;
};

template <> class ResponseHandlerArg<ErrorSuccess(Error)> {
public:
  using ArgType = Error;
};

// ResponseHandler represents a handler for a not-yet-received function call
// result.
template <typename ChannelT> class ResponseHandler {
public:
  virtual ~ResponseHandler() {}

  // Reads the function result off the wire and acts on it. The meaning of
  // "act" will depend on how this method is implemented in any given
  // ResponseHandler subclass but could, for example, mean running a
  // user-specified handler or setting a promise value.
  virtual Error handleResponse(ChannelT &C) = 0;

  // Abandons this outstanding result.
  virtual void abandon() = 0;

  // Create an error instance representing an abandoned response.
  static Error createAbandonedResponseError() {
    return orcError(OrcErrorCode::RPCResponseAbandoned);
  }
};

// ResponseHandler subclass for RPC functions with non-void returns.
template <typename ChannelT, typename FuncRetT, typename HandlerT>
class ResponseHandlerImpl : public ResponseHandler<ChannelT> {
public:
  ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}

  // Handle the result by deserializing it from the channel then passing it
  // to the user defined handler.
  Error handleResponse(ChannelT &C) override {
    using UnwrappedArgType = typename ResponseHandlerArg<
        typename HandlerTraits<HandlerT>::Type>::UnwrappedArgType;
    UnwrappedArgType Result;
    if (auto Err =
            SerializationTraits<ChannelT, FuncRetT,
                                UnwrappedArgType>::deserialize(C, Result))
      return Err;
    if (auto Err = C.endReceiveMessage())
      return Err;
    return Handler(Result);
  }

  // Abandon this response by calling the handler with an 'abandoned response'
  // error.
  void abandon() override {
    if (auto Err = Handler(this->createAbandonedResponseError())) {
      // Handlers should not fail when passed an abandoned response error.
      report_fatal_error(std::move(Err));
    }
  }

private:
  HandlerT Handler;
};

// ResponseHandler subclass for RPC functions with void returns.
template <typename ChannelT, typename HandlerT>
class ResponseHandlerImpl<ChannelT, void, HandlerT>
    : public ResponseHandler<ChannelT> {
public:
  ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}

  // Handle the result (no actual value, just a notification that the function
  // has completed on the remote end) by calling the user-defined handler with
  // Error::success().
  Error handleResponse(ChannelT &C) override {
    if (auto Err = C.endReceiveMessage())
      return Err;
    return Handler(Error::success());
  }

  // Abandon this response by calling the handler with an 'abandoned response'
  // error.
  void abandon() override {
    if (auto Err = Handler(this->createAbandonedResponseError())) {
      // Handlers should not fail when passed an abandoned response error.
      report_fatal_error(std::move(Err));
    }
  }

private:
  HandlerT Handler;
};

// Create a ResponseHandler from a given user handler.
template <typename ChannelT, typename FuncRetT, typename HandlerT>
std::unique_ptr<ResponseHandler<ChannelT>> createResponseHandler(HandlerT H) {
  return llvm::make_unique<ResponseHandlerImpl<ChannelT, FuncRetT, HandlerT>>(
      std::move(H));
}

// Helper for wrapping member functions up as functors. This is useful for
// installing methods as result handlers.
template <typename ClassT, typename RetT, typename... ArgTs>
class MemberFnWrapper {
public:
  using MethodT = RetT (ClassT::*)(ArgTs...);
  MemberFnWrapper(ClassT &Instance, MethodT Method)
      : Instance(Instance), Method(Method) {}
  RetT operator()(ArgTs &&... Args) {
    return (Instance.*Method)(std::move(Args)...);
  }

private:
  ClassT &Instance;
  MethodT Method;
};

// Helper that provides a Functor for deserializing arguments.
template <typename... ArgTs> class ReadArgs {
public:
  Error operator()() { return Error::success(); }
};

template <typename ArgT, typename... ArgTs>
class ReadArgs<ArgT, ArgTs...> : public ReadArgs<ArgTs...> {
public:
  ReadArgs(ArgT &Arg, ArgTs &... Args)
      : ReadArgs<ArgTs...>(Args...), Arg(Arg) {}

  Error operator()(ArgT &ArgVal, ArgTs &... ArgVals) {
    this->Arg = std::move(ArgVal);
    return ReadArgs<ArgTs...>::operator()(ArgVals...);
  }

private:
  ArgT &Arg;
};

// Manage sequence numbers.
template <typename SequenceNumberT> class SequenceNumberManager {
public:
  // Reset, making all sequence numbers available.
  void reset() {
    std::lock_guard<std::mutex> Lock(SeqNoLock);
    NextSequenceNumber = 0;
    FreeSequenceNumbers.clear();
  }

  // Get the next available sequence number. Will re-use numbers that have
  // been released.
  SequenceNumberT getSequenceNumber() {
    std::lock_guard<std::mutex> Lock(SeqNoLock);
    if (FreeSequenceNumbers.empty())
      return NextSequenceNumber++;
    auto SequenceNumber = FreeSequenceNumbers.back();
    FreeSequenceNumbers.pop_back();
    return SequenceNumber;
  }

  // Release a sequence number, making it available for re-use.
  void releaseSequenceNumber(SequenceNumberT SequenceNumber) {
    std::lock_guard<std::mutex> Lock(SeqNoLock);
    FreeSequenceNumbers.push_back(SequenceNumber);
  }

private:
  std::mutex SeqNoLock;
  SequenceNumberT NextSequenceNumber = 0;
  std::vector<SequenceNumberT> FreeSequenceNumbers;
};

// Checks that predicate P holds for each corresponding pair of type arguments
// from T1 and T2 tuple.
template <template <class, class> class P, typename T1Tuple, typename T2Tuple>
class RPCArgTypeCheckHelper;

template <template <class, class> class P>
class RPCArgTypeCheckHelper<P, std::tuple<>, std::tuple<>> {
public:
  static const bool value = true;
};

template <template <class, class> class P, typename T, typename... Ts,
          typename U, typename... Us>
class RPCArgTypeCheckHelper<P, std::tuple<T, Ts...>, std::tuple<U, Us...>> {
public:
  static const bool value =
      P<T, U>::value &&
      RPCArgTypeCheckHelper<P, std::tuple<Ts...>, std::tuple<Us...>>::value;
};

template <template <class, class> class P, typename T1Sig, typename T2Sig>
class RPCArgTypeCheck {
public:
  using T1Tuple = typename FunctionArgsTuple<T1Sig>::Type;
  using T2Tuple = typename FunctionArgsTuple<T2Sig>::Type;

  static_assert(std::tuple_size<T1Tuple>::value >=
                    std::tuple_size<T2Tuple>::value,
                "Too many arguments to RPC call");
  static_assert(std::tuple_size<T1Tuple>::value <=
                    std::tuple_size<T2Tuple>::value,
                "Too few arguments to RPC call");

  static const bool value = RPCArgTypeCheckHelper<P, T1Tuple, T2Tuple>::value;
};

template <typename ChannelT, typename WireT, typename ConcreteT>
class CanSerialize {
private:
  using S = SerializationTraits<ChannelT, WireT, ConcreteT>;

  template <typename T>
  static std::true_type
  check(typename std::enable_if<
        std::is_same<decltype(T::serialize(std::declval<ChannelT &>(),
                                           std::declval<const ConcreteT &>())),
                     Error>::value,
        void *>::type);

  template <typename> static std::false_type check(...);

public:
  static const bool value = decltype(check<S>(0))::value;
};

template <typename ChannelT, typename WireT, typename ConcreteT>
class CanDeserialize {
private:
  using S = SerializationTraits<ChannelT, WireT, ConcreteT>;

  template <typename T>
  static std::true_type
  check(typename std::enable_if<
        std::is_same<decltype(T::deserialize(std::declval<ChannelT &>(),
                                             std::declval<ConcreteT &>())),
                     Error>::value,
        void *>::type);

  template <typename> static std::false_type check(...);

public:
  static const bool value = decltype(check<S>(0))::value;
};

/// Contains primitive utilities for defining, calling and handling calls to
/// remote procedures. ChannelT is a bidirectional stream conforming to the
/// RPCChannel interface (see RPCChannel.h), FunctionIdT is a procedure
/// identifier type that must be serializable on ChannelT, and SequenceNumberT
/// is an integral type that will be used to number in-flight function calls.
///
/// These utilities support the construction of very primitive RPC utilities.
/// Their intent is to ensure correct serialization and deserialization of
/// procedure arguments, and to keep the client and server's view of the API in
/// sync.
template <typename ImplT, typename ChannelT, typename FunctionIdT,
          typename SequenceNumberT>
class RPCEndpointBase {
protected:
  class OrcRPCInvalid : public Function<OrcRPCInvalid, void()> {
  public:
    static const char *getName() { return "__orc_rpc$invalid"; }
  };

  class OrcRPCResponse : public Function<OrcRPCResponse, void()> {
  public:
    static const char *getName() { return "__orc_rpc$response"; }
  };

  class OrcRPCNegotiate
      : public Function<OrcRPCNegotiate, FunctionIdT(std::string)> {
  public:
    static const char *getName() { return "__orc_rpc$negotiate"; }
  };

  // Helper predicate for testing for the presence of SerializeTraits
  // serializers.
  template <typename WireT, typename ConcreteT>
  class CanSerializeCheck : detail::CanSerialize<ChannelT, WireT, ConcreteT> {
  public:
    using detail::CanSerialize<ChannelT, WireT, ConcreteT>::value;

    static_assert(value, "Missing serializer for argument (Can't serialize the "
                         "first template type argument of CanSerializeCheck "
                         "from the second)");
  };

  // Helper predicate for testing for the presence of SerializeTraits
  // deserializers.
  template <typename WireT, typename ConcreteT>
  class CanDeserializeCheck
      : detail::CanDeserialize<ChannelT, WireT, ConcreteT> {
  public:
    using detail::CanDeserialize<ChannelT, WireT, ConcreteT>::value;

    static_assert(value, "Missing deserializer for argument (Can't deserialize "
                         "the second template type argument of "
                         "CanDeserializeCheck from the first)");
  };

public:
  /// Construct an RPC instance on a channel.
  RPCEndpointBase(ChannelT &C, bool LazyAutoNegotiation)
      : C(C), LazyAutoNegotiation(LazyAutoNegotiation) {
    // Hold ResponseId in a special variable, since we expect Response to be
    // called relatively frequently, and want to avoid the map lookup.
    ResponseId = FnIdAllocator.getResponseId();
    RemoteFunctionIds[OrcRPCResponse::getPrototype()] = ResponseId;

    // Register the negotiate function id and handler.
    auto NegotiateId = FnIdAllocator.getNegotiateId();
    RemoteFunctionIds[OrcRPCNegotiate::getPrototype()] = NegotiateId;
    Handlers[NegotiateId] = wrapHandler<OrcRPCNegotiate>(
        [this](const std::string &Name) { return handleNegotiate(Name); },
        LaunchPolicy());
  }

  /// Append a call Func, does not call send on the channel.
  /// The first argument specifies a user-defined handler to be run when the
  /// function returns. The handler should take an Expected<Func::ReturnType>,
  /// or an Error (if Func::ReturnType is void). The handler will be called
  /// with an error if the return value is abandoned due to a channel error.
  template <typename Func, typename HandlerT, typename... ArgTs>
  Error appendCallAsync(HandlerT Handler, const ArgTs &... Args) {

    static_assert(
        detail::RPCArgTypeCheck<CanSerializeCheck, typename Func::Type,
                                void(ArgTs...)>::value,
        "");

    // Look up the function ID.
    FunctionIdT FnId;
    if (auto FnIdOrErr = getRemoteFunctionId<Func>())
      FnId = *FnIdOrErr;
    else {
      // This isn't a channel error so we don't want to abandon other pending
      // responses, but we still need to run the user handler with an error to
      // let them know the call failed.
      if (auto Err = Handler(orcError(OrcErrorCode::UnknownRPCFunction)))
        report_fatal_error(std::move(Err));
      return FnIdOrErr.takeError();
    }

    SequenceNumberT SeqNo; // initialized in locked scope below.
    {
      // Lock the pending responses map and sequence number manager.
      std::lock_guard<std::mutex> Lock(ResponsesMutex);

      // Allocate a sequence number.
      SeqNo = SequenceNumberMgr.getSequenceNumber();
      assert(!PendingResponses.count(SeqNo) &&
             "Sequence number already allocated");

      // Install the user handler.
      PendingResponses[SeqNo] =
        detail::createResponseHandler<ChannelT, typename Func::ReturnType>(
            std::move(Handler));
    }

    // Open the function call message.
    if (auto Err = C.startSendMessage(FnId, SeqNo)) {
      abandonPendingResponses();
      return joinErrors(std::move(Err), C.endSendMessage());
    }

    // Serialize the call arguments.
    if (auto Err = detail::HandlerTraits<typename Func::Type>::serializeArgs(
            C, Args...)) {
      abandonPendingResponses();
      return joinErrors(std::move(Err), C.endSendMessage());
    }

    // Close the function call messagee.
    if (auto Err = C.endSendMessage()) {
      abandonPendingResponses();
      return std::move(Err);
    }

    return Error::success();
  }

  Error sendAppendedCalls() { return C.send(); };

  template <typename Func, typename HandlerT, typename... ArgTs>
  Error callAsync(HandlerT Handler, const ArgTs &... Args) {
    if (auto Err = appendCallAsync<Func>(std::move(Handler), Args...))
      return Err;
    return C.send();
  }

  /// Handle one incoming call.
  Error handleOne() {
    FunctionIdT FnId;
    SequenceNumberT SeqNo;
    if (auto Err = C.startReceiveMessage(FnId, SeqNo))
      return Err;
    if (FnId == ResponseId)
      return handleResponse(SeqNo);
    auto I = Handlers.find(FnId);
    if (I != Handlers.end())
      return I->second(C, SeqNo);

    // else: No handler found. Report error to client?
    return orcError(OrcErrorCode::UnexpectedRPCCall);
  }

  /// Helper for handling setter procedures - this method returns a functor that
  /// sets the variables referred to by Args... to values deserialized from the
  /// channel.
  /// E.g.
  ///
  ///   typedef Function<0, bool, int> Func1;
  ///
  ///   ...
  ///   bool B;
  ///   int I;
  ///   if (auto Err = expect<Func1>(Channel, readArgs(B, I)))
  ///     /* Handle Args */ ;
  ///
  template <typename... ArgTs>
  static detail::ReadArgs<ArgTs...> readArgs(ArgTs &... Args) {
    return detail::ReadArgs<ArgTs...>(Args...);
  }

  /// Abandon all outstanding result handlers.
  ///
  /// This will call all currently registered result handlers to receive an
  /// "abandoned" error as their argument. This is used internally by the RPC
  /// in error situations, but can also be called directly by clients who are
  /// disconnecting from the remote and don't or can't expect responses to their
  /// outstanding calls. (Especially for outstanding blocking calls, calling
  /// this function may be necessary to avoid dead threads).
  void abandonPendingResponses() {
    // Lock the pending responses map and sequence number manager.
    std::lock_guard<std::mutex> Lock(ResponsesMutex);

    for (auto &KV : PendingResponses)
      KV.second->abandon();
    PendingResponses.clear();
    SequenceNumberMgr.reset();
  }

protected:
  // The LaunchPolicy type allows a launch policy to be specified when adding
  // a function handler. See addHandlerImpl.
  using LaunchPolicy = std::function<Error(std::function<Error()>)>;

  FunctionIdT getInvalidFunctionId() const {
    return FnIdAllocator.getInvalidId();
  }

  /// Add the given handler to the handler map and make it available for
  /// autonegotiation and execution.
  template <typename Func, typename HandlerT>
  void addHandlerImpl(HandlerT Handler, LaunchPolicy Launch) {

    static_assert(detail::RPCArgTypeCheck<
                      CanDeserializeCheck, typename Func::Type,
                      typename detail::HandlerTraits<HandlerT>::Type>::value,
                  "");

    FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>();
    LocalFunctionIds[Func::getPrototype()] = NewFnId;
    Handlers[NewFnId] =
        wrapHandler<Func>(std::move(Handler), std::move(Launch));
  }

  Error handleResponse(SequenceNumberT SeqNo) {
    using Handler = typename decltype(PendingResponses)::mapped_type;
    Handler PRHandler;

    {
      // Lock the pending responses map and sequence number manager.
      std::unique_lock<std::mutex> Lock(ResponsesMutex);
      auto I = PendingResponses.find(SeqNo);

      if (I != PendingResponses.end()) {
        PRHandler = std::move(I->second);
        PendingResponses.erase(I);
        SequenceNumberMgr.releaseSequenceNumber(SeqNo);
      } else {
        // Unlock the pending results map to prevent recursive lock.
        Lock.unlock();
        abandonPendingResponses();
        return orcError(OrcErrorCode::UnexpectedRPCResponse);
      }
    }

    assert(PRHandler &&
           "If we didn't find a response handler we should have bailed out");

    if (auto Err = PRHandler->handleResponse(C)) {
      abandonPendingResponses();
      return Err;
    }

    return Error::success();
  }

  FunctionIdT handleNegotiate(const std::string &Name) {
    auto I = LocalFunctionIds.find(Name);
    if (I == LocalFunctionIds.end())
      return getInvalidFunctionId();
    return I->second;
  }

  // Find the remote FunctionId for the given function, which must be in the
  // RemoteFunctionIds map.
  template <typename Func> Expected<FunctionIdT> getRemoteFunctionId() {
    // Try to find the id for the given function.
    auto I = RemoteFunctionIds.find(Func::getPrototype());

    // If we have it in the map, return it.
    if (I != RemoteFunctionIds.end())
      return I->second;

    // Otherwise, if we have auto-negotiation enabled, try to negotiate it.
    if (LazyAutoNegotiation) {
      auto &Impl = static_cast<ImplT &>(*this);
      if (auto RemoteIdOrErr =
              Impl.template callB<OrcRPCNegotiate>(Func::getPrototype())) {
        auto &RemoteId = *RemoteIdOrErr;

        // If autonegotiation indicates that the remote end doesn't support this
        // function, return an unknown function error.
        if (RemoteId == getInvalidFunctionId())
          return orcError(OrcErrorCode::UnknownRPCFunction);

        // Autonegotiation succeeded and returned a valid id. Update the map and
        // return the id.
        RemoteFunctionIds[Func::getPrototype()] = RemoteId;
        return RemoteId;
      } else {
        // Autonegotiation failed. Return the error.
        return RemoteIdOrErr.takeError();
      }
    }

    // No key was available in the map and autonegotiation wasn't enabled.
    // Return an unknown function error.
    return orcError(OrcErrorCode::UnknownRPCFunction);
  }

  using WrappedHandlerFn = std::function<Error(ChannelT &, SequenceNumberT)>;

  // Wrap the given user handler in the necessary argument-deserialization code,
  // result-serialization code, and call to the launch policy (if present).
  template <typename Func, typename HandlerT>
  WrappedHandlerFn wrapHandler(HandlerT Handler, LaunchPolicy Launch) {
    return [this, Handler, Launch](ChannelT &Channel,
                                   SequenceNumberT SeqNo) mutable -> Error {
      // Start by deserializing the arguments.
      auto Args = std::make_shared<
          typename detail::HandlerTraits<HandlerT>::ArgStorage>();
      if (auto Err =
              detail::HandlerTraits<typename Func::Type>::deserializeArgs(
                  Channel, *Args))
        return Err;

      // GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning
      // for RPCArgs. Void cast RPCArgs to work around this for now.
      // FIXME: Remove this workaround once we can assume a working GCC version.
      (void)Args;

      // End receieve message, unlocking the channel for reading.
      if (auto Err = Channel.endReceiveMessage())
        return Err;

      // Build the handler/responder.
      auto Responder = [this, Handler, Args, &Channel,
                        SeqNo]() mutable -> Error {
        using HTraits = detail::HandlerTraits<HandlerT>;
        using FuncReturn = typename Func::ReturnType;
        return detail::respond<FuncReturn>(
            Channel, ResponseId, SeqNo, HTraits::unpackAndRun(Handler, *Args));
      };

      // If there is an explicit launch policy then use it to launch the
      // handler.
      if (Launch)
        return Launch(std::move(Responder));

      // Otherwise run the handler on the listener thread.
      return Responder();
    };
  }

  ChannelT &C;

  bool LazyAutoNegotiation;

  RPCFunctionIdAllocator<FunctionIdT> FnIdAllocator;

  FunctionIdT ResponseId;
  std::map<std::string, FunctionIdT> LocalFunctionIds;
  std::map<const char *, FunctionIdT> RemoteFunctionIds;

  std::map<FunctionIdT, WrappedHandlerFn> Handlers;

  std::mutex ResponsesMutex;
  detail::SequenceNumberManager<SequenceNumberT> SequenceNumberMgr;
  std::map<SequenceNumberT, std::unique_ptr<detail::ResponseHandler<ChannelT>>>
      PendingResponses;
};

} // end namespace detail

template <typename ChannelT, typename FunctionIdT = uint32_t,
          typename SequenceNumberT = uint32_t>
class MultiThreadedRPCEndpoint
    : public detail::RPCEndpointBase<
          MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
          ChannelT, FunctionIdT, SequenceNumberT> {
private:
  using BaseClass =
      detail::RPCEndpointBase<
        MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
        ChannelT, FunctionIdT, SequenceNumberT>;

public:
  MultiThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation)
      : BaseClass(C, LazyAutoNegotiation) {}

  /// The LaunchPolicy type allows a launch policy to be specified when adding
  /// a function handler. See addHandler.
  using LaunchPolicy = typename BaseClass::LaunchPolicy;

  /// Add a handler for the given RPC function.
  /// This installs the given handler functor for the given RPC Function, and
  /// makes the RPC function available for negotiation/calling from the remote.
  ///
  /// The optional LaunchPolicy argument can be used to control how the handler
  /// is run when called:
  ///
  /// * If no LaunchPolicy is given, the handler code will be run on the RPC
  ///   handler thread that is reading from the channel. This handler cannot
  ///   make blocking RPC calls (since it would be blocking the thread used to
  ///   get the result), but can make non-blocking calls.
  ///
  /// * If a LaunchPolicy is given, the user's handler will be wrapped in a
  ///   call to serialize and send the result, and the resulting functor (with
  ///   type 'Error()' will be passed to the LaunchPolicy. The user can then
  ///   choose to add the wrapped handler to a work queue, spawn a new thread,
  ///   or anything else.
  template <typename Func, typename HandlerT>
  void addHandler(HandlerT Handler, LaunchPolicy Launch = LaunchPolicy()) {
    return this->template addHandlerImpl<Func>(std::move(Handler),
                                               std::move(Launch));
  }

  /// Add a class-method as a handler.
  template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
  void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...),
                  LaunchPolicy Launch = LaunchPolicy()) {
    addHandler<Func>(
      detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method),
      Launch);
  }

  /// Negotiate a function id for Func with the other end of the channel.
  template <typename Func> Error negotiateFunction(bool Retry = false) {
    using OrcRPCNegotiate = typename BaseClass::OrcRPCNegotiate;

    // Check if we already have a function id...
    auto I = this->RemoteFunctionIds.find(Func::getPrototype());
    if (I != this->RemoteFunctionIds.end()) {
      // If it's valid there's nothing left to do.
      if (I->second != this->getInvalidFunctionId())
        return Error::success();
      // If it's invalid and we can't re-attempt negotiation, throw an error.
      if (!Retry)
        return orcError(OrcErrorCode::UnknownRPCFunction);
    }

    // We don't have a function id for Func yet, call the remote to try to
    // negotiate one.
    if (auto RemoteIdOrErr = callB<OrcRPCNegotiate>(Func::getPrototype())) {
      this->RemoteFunctionIds[Func::getPrototype()] = *RemoteIdOrErr;
      if (*RemoteIdOrErr == this->getInvalidFunctionId())
        return orcError(OrcErrorCode::UnknownRPCFunction);
      return Error::success();
    } else
      return RemoteIdOrErr.takeError();
  }

  /// Return type for non-blocking call primitives.
  template <typename Func>
  using NonBlockingCallResult = typename detail::ResultTraits<
      typename Func::ReturnType>::ReturnFutureType;

  /// Call Func on Channel C. Does not block, does not call send. Returns a pair
  /// of a future result and the sequence number assigned to the result.
  ///
  /// This utility function is primarily used for single-threaded mode support,
  /// where the sequence number can be used to wait for the corresponding
  /// result. In multi-threaded mode the appendCallNB method, which does not
  /// return the sequence numeber, should be preferred.
  template <typename Func, typename... ArgTs>
  Expected<NonBlockingCallResult<Func>> appendCallNB(const ArgTs &... Args) {
    using RTraits = detail::ResultTraits<typename Func::ReturnType>;
    using ErrorReturn = typename RTraits::ErrorReturnType;
    using ErrorReturnPromise = typename RTraits::ReturnPromiseType;

    // FIXME: Stack allocate and move this into the handler once LLVM builds
    //        with C++14.
    auto Promise = std::make_shared<ErrorReturnPromise>();
    auto FutureResult = Promise->get_future();

    if (auto Err = this->template appendCallAsync<Func>(
            [Promise](ErrorReturn RetOrErr) {
              Promise->set_value(std::move(RetOrErr));
              return Error::success();
            },
            Args...)) {
      this->abandonPendingResponses();
      RTraits::consumeAbandoned(FutureResult.get());
      return std::move(Err);
    }
    return std::move(FutureResult);
  }

  /// The same as appendCallNBWithSeq, except that it calls C.send() to
  /// flush the channel after serializing the call.
  template <typename Func, typename... ArgTs>
  Expected<NonBlockingCallResult<Func>> callNB(const ArgTs &... Args) {
    auto Result = appendCallNB<Func>(Args...);
    if (!Result)
      return Result;
    if (auto Err = this->C.send()) {
      this->abandonPendingResponses();
      detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
          std::move(Result->get()));
      return std::move(Err);
    }
    return Result;
  }

  /// Call Func on Channel C. Blocks waiting for a result. Returns an Error
  /// for void functions or an Expected<T> for functions returning a T.
  ///
  /// This function is for use in threaded code where another thread is
  /// handling responses and incoming calls.
  template <typename Func, typename... ArgTs,
            typename AltRetT = typename Func::ReturnType>
  typename detail::ResultTraits<AltRetT>::ErrorReturnType
  callB(const ArgTs &... Args) {
    if (auto FutureResOrErr = callNB<Func>(Args...)) {
      if (auto Err = this->C.send()) {
        this->abandonPendingResponses();
        detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
            std::move(FutureResOrErr->get()));
        return std::move(Err);
      }
      return FutureResOrErr->get();
    } else
      return FutureResOrErr.takeError();
  }

  /// Handle incoming RPC calls.
  Error handlerLoop() {
    while (true)
      if (auto Err = this->handleOne())
        return Err;
    return Error::success();
  }
};

template <typename ChannelT, typename FunctionIdT = uint32_t,
          typename SequenceNumberT = uint32_t>
class SingleThreadedRPCEndpoint
    : public detail::RPCEndpointBase<
          SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
          ChannelT, FunctionIdT, SequenceNumberT> {
private:
  using BaseClass =
      detail::RPCEndpointBase<
        SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
        ChannelT, FunctionIdT, SequenceNumberT>;

  using LaunchPolicy = typename BaseClass::LaunchPolicy;

public:
  SingleThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation)
      : BaseClass(C, LazyAutoNegotiation) {}

  template <typename Func, typename HandlerT>
  void addHandler(HandlerT Handler) {
    return this->template addHandlerImpl<Func>(std::move(Handler),
                                               LaunchPolicy());
  }

  template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
  void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
    addHandler<Func>(
        detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
  }

  /// Negotiate a function id for Func with the other end of the channel.
  template <typename Func> Error negotiateFunction(bool Retry = false) {
    using OrcRPCNegotiate = typename BaseClass::OrcRPCNegotiate;

    // Check if we already have a function id...
    auto I = this->RemoteFunctionIds.find(Func::getPrototype());
    if (I != this->RemoteFunctionIds.end()) {
      // If it's valid there's nothing left to do.
      if (I->second != this->getInvalidFunctionId())
        return Error::success();
      // If it's invalid and we can't re-attempt negotiation, throw an error.
      if (!Retry)
        return orcError(OrcErrorCode::UnknownRPCFunction);
    }

    // We don't have a function id for Func yet, call the remote to try to
    // negotiate one.
    if (auto RemoteIdOrErr = callB<OrcRPCNegotiate>(Func::getPrototype())) {
      this->RemoteFunctionIds[Func::getPrototype()] = *RemoteIdOrErr;
      if (*RemoteIdOrErr == this->getInvalidFunctionId())
        return orcError(OrcErrorCode::UnknownRPCFunction);
      return Error::success();
    } else
      return RemoteIdOrErr.takeError();
  }

  template <typename Func, typename... ArgTs,
            typename AltRetT = typename Func::ReturnType>
  typename detail::ResultTraits<AltRetT>::ErrorReturnType
  callB(const ArgTs &... Args) {
    bool ReceivedResponse = false;
    using ResultType = typename detail::ResultTraits<AltRetT>::ErrorReturnType;
    auto Result = detail::ResultTraits<AltRetT>::createBlankErrorReturnValue();

    // We have to 'Check' result (which we know is in a success state at this
    // point) so that it can be overwritten in the async handler.
    (void)!!Result;

    if (auto Err = this->template appendCallAsync<Func>(
            [&](ResultType R) {
              Result = std::move(R);
              ReceivedResponse = true;
              return Error::success();
            },
            Args...)) {
      this->abandonPendingResponses();
      detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
          std::move(Result));
      return std::move(Err);
    }

    while (!ReceivedResponse) {
      if (auto Err = this->handleOne()) {
        this->abandonPendingResponses();
        detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
            std::move(Result));
        return std::move(Err);
      }
    }

    return Result;
  }
};

/// \brief Allows a set of asynchrounous calls to be dispatched, and then
///        waited on as a group.
template <typename RPCClass> class ParallelCallGroup {
public:

  /// \brief Construct a parallel call group for the given RPC.
  ParallelCallGroup(RPCClass &RPC) : RPC(RPC), NumOutstandingCalls(0) {}

  ParallelCallGroup(const ParallelCallGroup &) = delete;
  ParallelCallGroup &operator=(const ParallelCallGroup &) = delete;

  /// \brief Make as asynchronous call.
  ///
  /// Does not issue a send call to the RPC's channel. The channel may use this
  /// to batch up subsequent calls. A send will automatically be sent when wait
  /// is called.
  template <typename Func, typename HandlerT, typename... ArgTs>
  Error appendCall(HandlerT Handler, const ArgTs &... Args) {
    // Increment the count of outstanding calls. This has to happen before
    // we invoke the call, as the handler may (depending on scheduling)
    // be run immediately on another thread, and we don't want the decrement
    // in the wrapped handler below to run before the increment.
    {
      std::unique_lock<std::mutex> Lock(M);
      ++NumOutstandingCalls;
    }

    // Wrap the user handler in a lambda that will decrement the
    // outstanding calls count, then poke the condition variable.
    using ArgType = typename detail::ResponseHandlerArg<
        typename detail::HandlerTraits<HandlerT>::Type>::ArgType;
    // FIXME: Move handler into wrapped handler once we have C++14.
    auto WrappedHandler = [this, Handler](ArgType Arg) {
      auto Err = Handler(std::move(Arg));
      std::unique_lock<std::mutex> Lock(M);
      --NumOutstandingCalls;
      CV.notify_all();
      return Err;
    };

    return RPC.template appendCallAsync<Func>(std::move(WrappedHandler),
                                              Args...);
  }

  /// \brief Make an asynchronous call.
  ///
  /// The same as appendCall, but also calls send on the channel immediately.
  /// Prefer appendCall if you are about to issue a "wait" call shortly, as
  /// this may allow the channel to better batch the calls.
  template <typename Func, typename HandlerT, typename... ArgTs>
  Error call(HandlerT Handler, const ArgTs &... Args) {
    if (auto Err = appendCall(std::move(Handler), Args...))
      return Err;
    return RPC.sendAppendedCalls();
  }

  /// \brief Blocks until all calls have been completed and their return value
  ///        handlers run.
  Error wait() {
    if (auto Err = RPC.sendAppendedCalls())
      return Err;
    std::unique_lock<std::mutex> Lock(M);
    while (NumOutstandingCalls > 0)
      CV.wait(Lock);
    return Error::success();
  }

private:
  RPCClass &RPC;
  std::mutex M;
  std::condition_variable CV;
  uint32_t NumOutstandingCalls;
};

/// @brief Convenience class for grouping RPC Functions into APIs that can be
///        negotiated as a block.
///
template <typename... Funcs>
class APICalls {
public:

  /// @brief Test whether this API contains Function F.
  template <typename F>
  class Contains {
  public:
    static const bool value = false;
  };

  /// @brief Negotiate all functions in this API.
  template <typename RPCEndpoint>
  static Error negotiate(RPCEndpoint &R) {
    return Error::success();
  }
};

template <typename Func, typename... Funcs>
class APICalls<Func, Funcs...> {
public:

  template <typename F>
  class Contains {
  public:
    static const bool value = std::is_same<F, Func>::value |
                              APICalls<Funcs...>::template Contains<F>::value;
  };

  template <typename RPCEndpoint>
  static Error negotiate(RPCEndpoint &R) {
    if (auto Err = R.template negotiateFunction<Func>())
      return Err;
    return APICalls<Funcs...>::negotiate(R);
  }

};

template <typename... InnerFuncs, typename... Funcs>
class APICalls<APICalls<InnerFuncs...>, Funcs...> {
public:

  template <typename F>
  class Contains {
  public:
    static const bool value =
      APICalls<InnerFuncs...>::template Contains<F>::value |
      APICalls<Funcs...>::template Contains<F>::value;
  };

  template <typename RPCEndpoint>
  static Error negotiate(RPCEndpoint &R) {
    if (auto Err = APICalls<InnerFuncs...>::negotiate(R))
      return Err;
    return APICalls<Funcs...>::negotiate(R);
  }

};

} // end namespace rpc
} // end namespace orc
} // end namespace llvm

#endif