File: Cuda.cpp

package info (click to toggle)
llvm-toolchain-5.0 1:5.0.1-2~bpo9+1
  • links: PTS, VCS
  • area: main
  • in suites: stretch-backports
  • size: 553,688 kB
  • sloc: cpp: 2,878,786; ansic: 584,110; asm: 246,252; python: 124,751; objc: 106,925; sh: 21,542; lisp: 8,628; pascal: 5,885; ml: 5,544; perl: 5,312; makefile: 2,208; cs: 2,022; xml: 686; php: 212; csh: 117
file content (514 lines) | stat: -rw-r--r-- 19,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
//===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Cuda.h"
#include "InputInfo.h"
#include "clang/Basic/Cuda.h"
#include "clang/Basic/VirtualFileSystem.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/Path.h"
#include <system_error>

using namespace clang::driver;
using namespace clang::driver::toolchains;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;

// Parses the contents of version.txt in an CUDA installation.  It should
// contain one line of the from e.g. "CUDA Version 7.5.2".
static CudaVersion ParseCudaVersionFile(llvm::StringRef V) {
  if (!V.startswith("CUDA Version "))
    return CudaVersion::UNKNOWN;
  V = V.substr(strlen("CUDA Version "));
  int Major = -1, Minor = -1;
  auto First = V.split('.');
  auto Second = First.second.split('.');
  if (First.first.getAsInteger(10, Major) ||
      Second.first.getAsInteger(10, Minor))
    return CudaVersion::UNKNOWN;

  if (Major == 7 && Minor == 0) {
    // This doesn't appear to ever happen -- version.txt doesn't exist in the
    // CUDA 7 installs I've seen.  But no harm in checking.
    return CudaVersion::CUDA_70;
  }
  if (Major == 7 && Minor == 5)
    return CudaVersion::CUDA_75;
  if (Major == 8 && Minor == 0)
    return CudaVersion::CUDA_80;
  return CudaVersion::UNKNOWN;
}

CudaInstallationDetector::CudaInstallationDetector(
    const Driver &D, const llvm::Triple &HostTriple,
    const llvm::opt::ArgList &Args)
    : D(D) {
  SmallVector<std::string, 4> CudaPathCandidates;

  // In decreasing order so we prefer newer versions to older versions.
  std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"};

  if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) {
    CudaPathCandidates.push_back(
        Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ));
  } else if (HostTriple.isOSWindows()) {
    for (const char *Ver : Versions)
      CudaPathCandidates.push_back(
          D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" +
          Ver);
  } else {
    CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda");
    for (const char *Ver : Versions)
      CudaPathCandidates.push_back(D.SysRoot + "/usr/local/cuda-" + Ver);
    CudaPathCandidates.push_back(D.SysRoot + "/usr/lib/cuda");
  }

  for (const auto &CudaPath : CudaPathCandidates) {
    if (CudaPath.empty() || !D.getVFS().exists(CudaPath))
      continue;

    InstallPath = CudaPath;
    BinPath = CudaPath + "/bin";
    IncludePath = InstallPath + "/include";
    LibDevicePath = InstallPath + "/nvvm/libdevice";

    auto &FS = D.getVFS();
    if (!(FS.exists(IncludePath) && FS.exists(BinPath) &&
          FS.exists(LibDevicePath)))
      continue;

    // On Linux, we have both lib and lib64 directories, and we need to choose
    // based on our triple.  On MacOS, we have only a lib directory.
    //
    // It's sufficient for our purposes to be flexible: If both lib and lib64
    // exist, we choose whichever one matches our triple.  Otherwise, if only
    // lib exists, we use it.
    if (HostTriple.isArch64Bit() && FS.exists(InstallPath + "/lib64"))
      LibPath = InstallPath + "/lib64";
    else if (FS.exists(InstallPath + "/lib"))
      LibPath = InstallPath + "/lib";
    else
      continue;

    llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> VersionFile =
        FS.getBufferForFile(InstallPath + "/version.txt");
    if (!VersionFile) {
      // CUDA 7.0 doesn't have a version.txt, so guess that's our version if
      // version.txt isn't present.
      Version = CudaVersion::CUDA_70;
    } else {
      Version = ParseCudaVersionFile((*VersionFile)->getBuffer());
    }

    std::error_code EC;
    for (llvm::sys::fs::directory_iterator LI(LibDevicePath, EC), LE;
         !EC && LI != LE; LI = LI.increment(EC)) {
      StringRef FilePath = LI->path();
      StringRef FileName = llvm::sys::path::filename(FilePath);
      // Process all bitcode filenames that look like libdevice.compute_XX.YY.bc
      const StringRef LibDeviceName = "libdevice.";
      if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc")))
        continue;
      StringRef GpuArch = FileName.slice(
          LibDeviceName.size(), FileName.find('.', LibDeviceName.size()));
      LibDeviceMap[GpuArch] = FilePath.str();
      // Insert map entries for specifc devices with this compute
      // capability. NVCC's choice of the libdevice library version is
      // rather peculiar and depends on the CUDA version.
      if (GpuArch == "compute_20") {
        LibDeviceMap["sm_20"] = FilePath;
        LibDeviceMap["sm_21"] = FilePath;
        LibDeviceMap["sm_32"] = FilePath;
      } else if (GpuArch == "compute_30") {
        LibDeviceMap["sm_30"] = FilePath;
        if (Version < CudaVersion::CUDA_80) {
          LibDeviceMap["sm_50"] = FilePath;
          LibDeviceMap["sm_52"] = FilePath;
          LibDeviceMap["sm_53"] = FilePath;
        }
        LibDeviceMap["sm_60"] = FilePath;
        LibDeviceMap["sm_61"] = FilePath;
        LibDeviceMap["sm_62"] = FilePath;
      } else if (GpuArch == "compute_35") {
        LibDeviceMap["sm_35"] = FilePath;
        LibDeviceMap["sm_37"] = FilePath;
      } else if (GpuArch == "compute_50") {
        if (Version >= CudaVersion::CUDA_80) {
          LibDeviceMap["sm_50"] = FilePath;
          LibDeviceMap["sm_52"] = FilePath;
          LibDeviceMap["sm_53"] = FilePath;
        }
      }
    }

    IsValid = true;
    break;
  }
}

void CudaInstallationDetector::AddCudaIncludeArgs(
    const ArgList &DriverArgs, ArgStringList &CC1Args) const {
  if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) {
    // Add cuda_wrappers/* to our system include path.  This lets us wrap
    // standard library headers.
    SmallString<128> P(D.ResourceDir);
    llvm::sys::path::append(P, "include");
    llvm::sys::path::append(P, "cuda_wrappers");
    CC1Args.push_back("-internal-isystem");
    CC1Args.push_back(DriverArgs.MakeArgString(P));
  }

  if (DriverArgs.hasArg(options::OPT_nocudainc))
    return;

  if (!isValid()) {
    D.Diag(diag::err_drv_no_cuda_installation);
    return;
  }

  CC1Args.push_back("-internal-isystem");
  CC1Args.push_back(DriverArgs.MakeArgString(getIncludePath()));
  CC1Args.push_back("-include");
  CC1Args.push_back("__clang_cuda_runtime_wrapper.h");
}

void CudaInstallationDetector::CheckCudaVersionSupportsArch(
    CudaArch Arch) const {
  if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN ||
      ArchsWithVersionTooLowErrors.count(Arch) > 0)
    return;

  auto RequiredVersion = MinVersionForCudaArch(Arch);
  if (Version < RequiredVersion) {
    ArchsWithVersionTooLowErrors.insert(Arch);
    D.Diag(diag::err_drv_cuda_version_too_low)
        << InstallPath << CudaArchToString(Arch) << CudaVersionToString(Version)
        << CudaVersionToString(RequiredVersion);
  }
}

void CudaInstallationDetector::print(raw_ostream &OS) const {
  if (isValid())
    OS << "Found CUDA installation: " << InstallPath << ", version "
       << CudaVersionToString(Version) << "\n";
}

void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA,
                                    const InputInfo &Output,
                                    const InputInfoList &Inputs,
                                    const ArgList &Args,
                                    const char *LinkingOutput) const {
  const auto &TC =
      static_cast<const toolchains::CudaToolChain &>(getToolChain());
  assert(TC.getTriple().isNVPTX() && "Wrong platform");

  // Obtain architecture from the action.
  CudaArch gpu_arch = StringToCudaArch(JA.getOffloadingArch());
  assert(gpu_arch != CudaArch::UNKNOWN &&
         "Device action expected to have an architecture.");

  // Check that our installation's ptxas supports gpu_arch.
  if (!Args.hasArg(options::OPT_no_cuda_version_check)) {
    TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch);
  }

  ArgStringList CmdArgs;
  CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32");
  if (Args.hasFlag(options::OPT_cuda_noopt_device_debug,
                   options::OPT_no_cuda_noopt_device_debug, false)) {
    // ptxas does not accept -g option if optimization is enabled, so
    // we ignore the compiler's -O* options if we want debug info.
    CmdArgs.push_back("-g");
    CmdArgs.push_back("--dont-merge-basicblocks");
    CmdArgs.push_back("--return-at-end");
  } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
    // Map the -O we received to -O{0,1,2,3}.
    //
    // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's
    // default, so it may correspond more closely to the spirit of clang -O2.

    // -O3 seems like the least-bad option when -Osomething is specified to
    // clang but it isn't handled below.
    StringRef OOpt = "3";
    if (A->getOption().matches(options::OPT_O4) ||
        A->getOption().matches(options::OPT_Ofast))
      OOpt = "3";
    else if (A->getOption().matches(options::OPT_O0))
      OOpt = "0";
    else if (A->getOption().matches(options::OPT_O)) {
      // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options.
      OOpt = llvm::StringSwitch<const char *>(A->getValue())
                 .Case("1", "1")
                 .Case("2", "2")
                 .Case("3", "3")
                 .Case("s", "2")
                 .Case("z", "2")
                 .Default("2");
    }
    CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt));
  } else {
    // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond
    // to no optimizations, but ptxas's default is -O3.
    CmdArgs.push_back("-O0");
  }

  CmdArgs.push_back("--gpu-name");
  CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch)));
  CmdArgs.push_back("--output-file");
  CmdArgs.push_back(Args.MakeArgString(Output.getFilename()));
  for (const auto& II : Inputs)
    CmdArgs.push_back(Args.MakeArgString(II.getFilename()));

  for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_ptxas))
    CmdArgs.push_back(Args.MakeArgString(A));

  const char *Exec;
  if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ))
    Exec = A->getValue();
  else
    Exec = Args.MakeArgString(TC.GetProgramPath("ptxas"));
  C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs, Inputs));
}

// All inputs to this linker must be from CudaDeviceActions, as we need to look
// at the Inputs' Actions in order to figure out which GPU architecture they
// correspond to.
void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA,
                                 const InputInfo &Output,
                                 const InputInfoList &Inputs,
                                 const ArgList &Args,
                                 const char *LinkingOutput) const {
  const auto &TC =
      static_cast<const toolchains::CudaToolChain &>(getToolChain());
  assert(TC.getTriple().isNVPTX() && "Wrong platform");

  ArgStringList CmdArgs;
  CmdArgs.push_back("--cuda");
  CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32");
  CmdArgs.push_back(Args.MakeArgString("--create"));
  CmdArgs.push_back(Args.MakeArgString(Output.getFilename()));

  for (const auto& II : Inputs) {
    auto *A = II.getAction();
    assert(A->getInputs().size() == 1 &&
           "Device offload action is expected to have a single input");
    const char *gpu_arch_str = A->getOffloadingArch();
    assert(gpu_arch_str &&
           "Device action expected to have associated a GPU architecture!");
    CudaArch gpu_arch = StringToCudaArch(gpu_arch_str);

    // We need to pass an Arch of the form "sm_XX" for cubin files and
    // "compute_XX" for ptx.
    const char *Arch =
        (II.getType() == types::TY_PP_Asm)
            ? CudaVirtualArchToString(VirtualArchForCudaArch(gpu_arch))
            : gpu_arch_str;
    CmdArgs.push_back(Args.MakeArgString(llvm::Twine("--image=profile=") +
                                         Arch + ",file=" + II.getFilename()));
  }

  for (const auto& A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary))
    CmdArgs.push_back(Args.MakeArgString(A));

  const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary"));
  C.addCommand(llvm::make_unique<Command>(JA, *this, Exec, CmdArgs, Inputs));
}

/// CUDA toolchain.  Our assembler is ptxas, and our "linker" is fatbinary,
/// which isn't properly a linker but nonetheless performs the step of stitching
/// together object files from the assembler into a single blob.

CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple,
                             const ToolChain &HostTC, const ArgList &Args)
    : ToolChain(D, Triple, Args), HostTC(HostTC),
      CudaInstallation(D, HostTC.getTriple(), Args) {
  if (CudaInstallation.isValid())
    getProgramPaths().push_back(CudaInstallation.getBinPath());
}

void CudaToolChain::addClangTargetOptions(
    const llvm::opt::ArgList &DriverArgs,
    llvm::opt::ArgStringList &CC1Args,
    Action::OffloadKind DeviceOffloadingKind) const {
  HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind);

  StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
  assert(!GpuArch.empty() && "Must have an explicit GPU arch.");
  assert((DeviceOffloadingKind == Action::OFK_OpenMP ||
          DeviceOffloadingKind == Action::OFK_Cuda) &&
         "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs.");

  if (DeviceOffloadingKind == Action::OFK_Cuda) {
    CC1Args.push_back("-fcuda-is-device");

    if (DriverArgs.hasFlag(options::OPT_fcuda_flush_denormals_to_zero,
                           options::OPT_fno_cuda_flush_denormals_to_zero, false))
      CC1Args.push_back("-fcuda-flush-denormals-to-zero");

    if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals,
                           options::OPT_fno_cuda_approx_transcendentals, false))
      CC1Args.push_back("-fcuda-approx-transcendentals");

    if (DriverArgs.hasArg(options::OPT_nocudalib))
      return;
  }

  std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch);

  if (LibDeviceFile.empty()) {
    getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch;
    return;
  }

  CC1Args.push_back("-mlink-cuda-bitcode");
  CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile));

  // Libdevice in CUDA-7.0 requires PTX version that's more recent
  // than LLVM defaults to. Use PTX4.2 which is the PTX version that
  // came with CUDA-7.0.
  CC1Args.push_back("-target-feature");
  CC1Args.push_back("+ptx42");
}

void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs,
                                       ArgStringList &CC1Args) const {
  // Check our CUDA version if we're going to include the CUDA headers.
  if (!DriverArgs.hasArg(options::OPT_nocudainc) &&
      !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) {
    StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ);
    assert(!Arch.empty() && "Must have an explicit GPU arch.");
    CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch));
  }
  CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args);
}

llvm::opt::DerivedArgList *
CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args,
                             StringRef BoundArch,
                             Action::OffloadKind DeviceOffloadKind) const {
  DerivedArgList *DAL =
      HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind);
  if (!DAL)
    DAL = new DerivedArgList(Args.getBaseArgs());

  const OptTable &Opts = getDriver().getOpts();

  // For OpenMP device offloading, append derived arguments. Make sure
  // flags are not duplicated.
  // TODO: Append the compute capability.
  if (DeviceOffloadKind == Action::OFK_OpenMP) {
    for (Arg *A : Args){
      bool IsDuplicate = false;
      for (Arg *DALArg : *DAL){
        if (A == DALArg) {
          IsDuplicate = true;
          break;
        }
      }
      if (!IsDuplicate)
        DAL->append(A);
    }
    return DAL;
  }

  for (Arg *A : Args) {
    if (A->getOption().matches(options::OPT_Xarch__)) {
      // Skip this argument unless the architecture matches BoundArch
      if (BoundArch.empty() || A->getValue(0) != BoundArch)
        continue;

      unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(1));
      unsigned Prev = Index;
      std::unique_ptr<Arg> XarchArg(Opts.ParseOneArg(Args, Index));

      // If the argument parsing failed or more than one argument was
      // consumed, the -Xarch_ argument's parameter tried to consume
      // extra arguments. Emit an error and ignore.
      //
      // We also want to disallow any options which would alter the
      // driver behavior; that isn't going to work in our model. We
      // use isDriverOption() as an approximation, although things
      // like -O4 are going to slip through.
      if (!XarchArg || Index > Prev + 1) {
        getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args)
            << A->getAsString(Args);
        continue;
      } else if (XarchArg->getOption().hasFlag(options::DriverOption)) {
        getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver)
            << A->getAsString(Args);
        continue;
      }
      XarchArg->setBaseArg(A);
      A = XarchArg.release();
      DAL->AddSynthesizedArg(A);
    }
    DAL->append(A);
  }

  if (!BoundArch.empty()) {
    DAL->eraseArg(options::OPT_march_EQ);
    DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), BoundArch);
  }
  return DAL;
}

Tool *CudaToolChain::buildAssembler() const {
  return new tools::NVPTX::Assembler(*this);
}

Tool *CudaToolChain::buildLinker() const {
  return new tools::NVPTX::Linker(*this);
}

void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {
  HostTC.addClangWarningOptions(CC1Args);
}

ToolChain::CXXStdlibType
CudaToolChain::GetCXXStdlibType(const ArgList &Args) const {
  return HostTC.GetCXXStdlibType(Args);
}

void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs,
                                              ArgStringList &CC1Args) const {
  HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args);
}

void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args,
                                                 ArgStringList &CC1Args) const {
  HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args);
}

void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args,
                                        ArgStringList &CC1Args) const {
  HostTC.AddIAMCUIncludeArgs(Args, CC1Args);
}

SanitizerMask CudaToolChain::getSupportedSanitizers() const {
  // The CudaToolChain only supports sanitizers in the sense that it allows
  // sanitizer arguments on the command line if they are supported by the host
  // toolchain. The CudaToolChain will actually ignore any command line
  // arguments for any of these "supported" sanitizers. That means that no
  // sanitization of device code is actually supported at this time.
  //
  // This behavior is necessary because the host and device toolchains
  // invocations often share the command line, so the device toolchain must
  // tolerate flags meant only for the host toolchain.
  return HostTC.getSupportedSanitizers();
}

VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D,
                                               const ArgList &Args) const {
  return HostTC.computeMSVCVersion(D, Args);
}