1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
//===--- PPCaching.cpp - Handle caching lexed tokens ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements pieces of the Preprocessor interface that manage the
// caching of lexed tokens.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
using namespace clang;
// EnableBacktrackAtThisPos - From the point that this method is called, and
// until CommitBacktrackedTokens() or Backtrack() is called, the Preprocessor
// keeps track of the lexed tokens so that a subsequent Backtrack() call will
// make the Preprocessor re-lex the same tokens.
//
// Nested backtracks are allowed, meaning that EnableBacktrackAtThisPos can
// be called multiple times and CommitBacktrackedTokens/Backtrack calls will
// be combined with the EnableBacktrackAtThisPos calls in reverse order.
void Preprocessor::EnableBacktrackAtThisPos() {
BacktrackPositions.push_back(CachedLexPos);
EnterCachingLexMode();
}
// Disable the last EnableBacktrackAtThisPos call.
void Preprocessor::CommitBacktrackedTokens() {
assert(!BacktrackPositions.empty()
&& "EnableBacktrackAtThisPos was not called!");
BacktrackPositions.pop_back();
}
Preprocessor::CachedTokensRange Preprocessor::LastCachedTokenRange() {
assert(isBacktrackEnabled());
auto PrevCachedLexPos = BacktrackPositions.back();
return CachedTokensRange{PrevCachedLexPos, CachedLexPos};
}
void Preprocessor::EraseCachedTokens(CachedTokensRange TokenRange) {
assert(TokenRange.Begin <= TokenRange.End);
if (CachedLexPos == TokenRange.Begin && TokenRange.Begin != TokenRange.End) {
// We have backtracked to the start of the token range as we want to consume
// them again. Erase the tokens only after consuming then.
assert(!CachedTokenRangeToErase);
CachedTokenRangeToErase = TokenRange;
return;
}
// The cached tokens were committed, so they should be erased now.
assert(TokenRange.End == CachedLexPos);
CachedTokens.erase(CachedTokens.begin() + TokenRange.Begin,
CachedTokens.begin() + TokenRange.End);
CachedLexPos = TokenRange.Begin;
ExitCachingLexMode();
}
// Make Preprocessor re-lex the tokens that were lexed since
// EnableBacktrackAtThisPos() was previously called.
void Preprocessor::Backtrack() {
assert(!BacktrackPositions.empty()
&& "EnableBacktrackAtThisPos was not called!");
CachedLexPos = BacktrackPositions.back();
BacktrackPositions.pop_back();
recomputeCurLexerKind();
}
void Preprocessor::CachingLex(Token &Result) {
if (!InCachingLexMode())
return;
if (CachedLexPos < CachedTokens.size()) {
Result = CachedTokens[CachedLexPos++];
// Erase the some of the cached tokens after they are consumed when
// asked to do so.
if (CachedTokenRangeToErase &&
CachedTokenRangeToErase->End == CachedLexPos) {
EraseCachedTokens(*CachedTokenRangeToErase);
CachedTokenRangeToErase = None;
}
return;
}
ExitCachingLexMode();
Lex(Result);
if (isBacktrackEnabled()) {
// Cache the lexed token.
EnterCachingLexMode();
CachedTokens.push_back(Result);
++CachedLexPos;
return;
}
if (CachedLexPos < CachedTokens.size()) {
EnterCachingLexMode();
} else {
// All cached tokens were consumed.
CachedTokens.clear();
CachedLexPos = 0;
}
}
void Preprocessor::EnterCachingLexMode() {
if (InCachingLexMode()) {
assert(CurLexerKind == CLK_CachingLexer && "Unexpected lexer kind");
return;
}
PushIncludeMacroStack();
CurLexerKind = CLK_CachingLexer;
}
const Token &Preprocessor::PeekAhead(unsigned N) {
assert(CachedLexPos + N > CachedTokens.size() && "Confused caching.");
ExitCachingLexMode();
for (size_t C = CachedLexPos + N - CachedTokens.size(); C > 0; --C) {
CachedTokens.push_back(Token());
Lex(CachedTokens.back());
}
EnterCachingLexMode();
return CachedTokens.back();
}
void Preprocessor::AnnotatePreviousCachedTokens(const Token &Tok) {
assert(Tok.isAnnotation() && "Expected annotation token");
assert(CachedLexPos != 0 && "Expected to have some cached tokens");
assert(CachedTokens[CachedLexPos-1].getLastLoc() == Tok.getAnnotationEndLoc()
&& "The annotation should be until the most recent cached token");
// Start from the end of the cached tokens list and look for the token
// that is the beginning of the annotation token.
for (CachedTokensTy::size_type i = CachedLexPos; i != 0; --i) {
CachedTokensTy::iterator AnnotBegin = CachedTokens.begin() + i-1;
if (AnnotBegin->getLocation() == Tok.getLocation()) {
assert((BacktrackPositions.empty() || BacktrackPositions.back() <= i) &&
"The backtrack pos points inside the annotated tokens!");
// Replace the cached tokens with the single annotation token.
if (i < CachedLexPos)
CachedTokens.erase(AnnotBegin + 1, CachedTokens.begin() + CachedLexPos);
*AnnotBegin = Tok;
CachedLexPos = i;
return;
}
}
}
bool Preprocessor::IsPreviousCachedToken(const Token &Tok) const {
// There's currently no cached token...
if (!CachedLexPos)
return false;
const Token LastCachedTok = CachedTokens[CachedLexPos - 1];
if (LastCachedTok.getKind() != Tok.getKind())
return false;
int RelOffset = 0;
if ((!getSourceManager().isInSameSLocAddrSpace(
Tok.getLocation(), getLastCachedTokenLocation(), &RelOffset)) ||
RelOffset)
return false;
return true;
}
void Preprocessor::ReplacePreviousCachedToken(ArrayRef<Token> NewToks) {
assert(CachedLexPos != 0 && "Expected to have some cached tokens");
CachedTokens.insert(CachedTokens.begin() + CachedLexPos - 1, NewToks.begin(),
NewToks.end());
CachedTokens.erase(CachedTokens.begin() + CachedLexPos - 1 + NewToks.size());
CachedLexPos += NewToks.size() - 1;
}
|