1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
//=== ConversionChecker.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Check that there is no loss of sign/precision in assignments, comparisons
// and multiplications.
//
// ConversionChecker uses path sensitive analysis to determine possible values
// of expressions. A warning is reported when:
// * a negative value is implicitly converted to an unsigned value in an
// assignment, comparison or multiplication.
// * assignment / initialization when source value is greater than the max
// value of target
//
// Many compilers and tools have similar checks that are based on semantic
// analysis. Those checks are sound but have poor precision. ConversionChecker
// is an alternative to those checks.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "clang/AST/ParentMap.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
using namespace clang;
using namespace ento;
namespace {
class ConversionChecker : public Checker<check::PreStmt<ImplicitCastExpr>> {
public:
void checkPreStmt(const ImplicitCastExpr *Cast, CheckerContext &C) const;
private:
mutable std::unique_ptr<BuiltinBug> BT;
// Is there loss of precision
bool isLossOfPrecision(const ImplicitCastExpr *Cast, QualType DestType,
CheckerContext &C) const;
// Is there loss of sign
bool isLossOfSign(const ImplicitCastExpr *Cast, CheckerContext &C) const;
void reportBug(ExplodedNode *N, CheckerContext &C, const char Msg[]) const;
};
}
void ConversionChecker::checkPreStmt(const ImplicitCastExpr *Cast,
CheckerContext &C) const {
// TODO: For now we only warn about DeclRefExpr, to avoid noise. Warn for
// calculations also.
if (!isa<DeclRefExpr>(Cast->IgnoreParenImpCasts()))
return;
// Don't warn for loss of sign/precision in macros.
if (Cast->getExprLoc().isMacroID())
return;
// Get Parent.
const ParentMap &PM = C.getLocationContext()->getParentMap();
const Stmt *Parent = PM.getParent(Cast);
if (!Parent)
return;
bool LossOfSign = false;
bool LossOfPrecision = false;
// Loss of sign/precision in binary operation.
if (const auto *B = dyn_cast<BinaryOperator>(Parent)) {
BinaryOperator::Opcode Opc = B->getOpcode();
if (Opc == BO_Assign) {
LossOfSign = isLossOfSign(Cast, C);
LossOfPrecision = isLossOfPrecision(Cast, Cast->getType(), C);
} else if (Opc == BO_AddAssign || Opc == BO_SubAssign) {
// No loss of sign.
LossOfPrecision = isLossOfPrecision(Cast, B->getLHS()->getType(), C);
} else if (Opc == BO_MulAssign) {
LossOfSign = isLossOfSign(Cast, C);
LossOfPrecision = isLossOfPrecision(Cast, B->getLHS()->getType(), C);
} else if (Opc == BO_DivAssign || Opc == BO_RemAssign) {
LossOfSign = isLossOfSign(Cast, C);
// No loss of precision.
} else if (Opc == BO_AndAssign) {
LossOfSign = isLossOfSign(Cast, C);
// No loss of precision.
} else if (Opc == BO_OrAssign || Opc == BO_XorAssign) {
LossOfSign = isLossOfSign(Cast, C);
LossOfPrecision = isLossOfPrecision(Cast, B->getLHS()->getType(), C);
} else if (B->isRelationalOp() || B->isMultiplicativeOp()) {
LossOfSign = isLossOfSign(Cast, C);
}
} else if (isa<DeclStmt>(Parent)) {
LossOfSign = isLossOfSign(Cast, C);
LossOfPrecision = isLossOfPrecision(Cast, Cast->getType(), C);
}
if (LossOfSign || LossOfPrecision) {
// Generate an error node.
ExplodedNode *N = C.generateNonFatalErrorNode(C.getState());
if (!N)
return;
if (LossOfSign)
reportBug(N, C, "Loss of sign in implicit conversion");
if (LossOfPrecision)
reportBug(N, C, "Loss of precision in implicit conversion");
}
}
void ConversionChecker::reportBug(ExplodedNode *N, CheckerContext &C,
const char Msg[]) const {
if (!BT)
BT.reset(
new BuiltinBug(this, "Conversion", "Possible loss of sign/precision."));
// Generate a report for this bug.
auto R = llvm::make_unique<BugReport>(*BT, Msg, N);
C.emitReport(std::move(R));
}
bool ConversionChecker::isLossOfPrecision(const ImplicitCastExpr *Cast,
QualType DestType,
CheckerContext &C) const {
// Don't warn about explicit loss of precision.
if (Cast->isEvaluatable(C.getASTContext()))
return false;
QualType SubType = Cast->IgnoreParenImpCasts()->getType();
if (!DestType->isIntegerType() || !SubType->isIntegerType())
return false;
if (C.getASTContext().getIntWidth(DestType) >=
C.getASTContext().getIntWidth(SubType))
return false;
unsigned W = C.getASTContext().getIntWidth(DestType);
if (W == 1 || W >= 64U)
return false;
unsigned long long MaxVal = 1ULL << W;
return C.isGreaterOrEqual(Cast->getSubExpr(), MaxVal);
}
bool ConversionChecker::isLossOfSign(const ImplicitCastExpr *Cast,
CheckerContext &C) const {
QualType CastType = Cast->getType();
QualType SubType = Cast->IgnoreParenImpCasts()->getType();
if (!CastType->isUnsignedIntegerType() || !SubType->isSignedIntegerType())
return false;
return C.isNegative(Cast->getSubExpr());
}
void ento::registerConversionChecker(CheckerManager &mgr) {
mgr.registerChecker<ConversionChecker>();
}
|