1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Trace PCs.
// This module implements __sanitizer_cov_trace_pc_guard[_init],
// the callback required for -fsanitize-coverage=trace-pc-guard instrumentation.
//
//===----------------------------------------------------------------------===//
#include "FuzzerTracePC.h"
#include "FuzzerCorpus.h"
#include "FuzzerDefs.h"
#include "FuzzerDictionary.h"
#include "FuzzerExtFunctions.h"
#include "FuzzerIO.h"
#include "FuzzerUtil.h"
#include "FuzzerValueBitMap.h"
#include <set>
// The coverage counters and PCs.
// These are declared as global variables named "__sancov_*" to simplify
// experiments with inlined instrumentation.
alignas(64) ATTRIBUTE_INTERFACE
uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs];
ATTRIBUTE_INTERFACE
uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs];
// Used by -fsanitize-coverage=stack-depth to track stack depth
ATTRIBUTE_INTERFACE __attribute__((tls_model("initial-exec")))
thread_local uintptr_t __sancov_lowest_stack;
namespace fuzzer {
TracePC TPC;
int ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr;
uint8_t *TracePC::Counters() const {
return __sancov_trace_pc_guard_8bit_counters;
}
uintptr_t *TracePC::PCs() const {
return __sancov_trace_pc_pcs;
}
size_t TracePC::GetTotalPCCoverage() {
if (ObservedPCs.size())
return ObservedPCs.size();
size_t Res = 0;
for (size_t i = 1, N = GetNumPCs(); i < N; i++)
if (PCs()[i])
Res++;
return Res;
}
void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) {
if (Start == Stop) return;
if (NumModulesWithInline8bitCounters &&
ModuleCounters[NumModulesWithInline8bitCounters-1].Start == Start) return;
assert(NumModulesWithInline8bitCounters <
sizeof(ModuleCounters) / sizeof(ModuleCounters[0]));
ModuleCounters[NumModulesWithInline8bitCounters++] = {Start, Stop};
NumInline8bitCounters += Stop - Start;
}
void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) {
const PCTableEntry *B = reinterpret_cast<const PCTableEntry *>(Start);
const PCTableEntry *E = reinterpret_cast<const PCTableEntry *>(Stop);
if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return;
assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0]));
ModulePCTable[NumPCTables++] = {B, E};
NumPCsInPCTables += E - B;
}
void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) {
if (Start == Stop || *Start) return;
assert(NumModules < sizeof(Modules) / sizeof(Modules[0]));
for (uint32_t *P = Start; P < Stop; P++) {
NumGuards++;
if (NumGuards == kNumPCs) {
RawPrint(
"WARNING: The binary has too many instrumented PCs.\n"
" You may want to reduce the size of the binary\n"
" for more efficient fuzzing and precise coverage data\n");
}
*P = NumGuards % kNumPCs;
}
Modules[NumModules].Start = Start;
Modules[NumModules].Stop = Stop;
NumModules++;
}
void TracePC::PrintModuleInfo() {
if (NumGuards) {
Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards);
for (size_t i = 0; i < NumModules; i++)
Printf("%zd [%p, %p), ", Modules[i].Stop - Modules[i].Start,
Modules[i].Start, Modules[i].Stop);
Printf("\n");
}
if (NumModulesWithInline8bitCounters) {
Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ",
NumModulesWithInline8bitCounters, NumInline8bitCounters);
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++)
Printf("%zd [%p, %p), ", ModuleCounters[i].Stop - ModuleCounters[i].Start,
ModuleCounters[i].Start, ModuleCounters[i].Stop);
Printf("\n");
}
if (NumPCTables) {
Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables,
NumPCsInPCTables);
for (size_t i = 0; i < NumPCTables; i++) {
Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start,
ModulePCTable[i].Start, ModulePCTable[i].Stop);
}
Printf("\n");
if ((NumGuards && NumGuards != NumPCsInPCTables) ||
(NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables)) {
Printf("ERROR: The size of coverage PC tables does not match the\n"
"number of instrumented PCs. This might be a compiler bug,\n"
"please contact the libFuzzer developers.\n"
"Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n"
"for possible workarounds (tl;dr: don't use the old GNU ld)\n");
_Exit(1);
}
}
if (size_t NumClangCounters = ClangCountersEnd() - ClangCountersBegin())
Printf("INFO: %zd Clang Coverage Counters\n", NumClangCounters);
}
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) {
const uintptr_t kBits = 12;
const uintptr_t kMask = (1 << kBits) - 1;
uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits);
ValueProfileMap.AddValueModPrime(Idx);
}
void TracePC::UpdateObservedPCs() {
Vector<uintptr_t> CoveredFuncs;
auto ObservePC = [&](uintptr_t PC) {
if (ObservedPCs.insert(PC).second && DoPrintNewPCs)
PrintPC("\tNEW_PC: %p %F %L\n", "\tNEW_PC: %p\n", PC + 1);
};
auto Observe = [&](const PCTableEntry &TE) {
if (TE.PCFlags & 1)
if (ObservedFuncs.insert(TE.PC).second && NumPrintNewFuncs)
CoveredFuncs.push_back(TE.PC);
ObservePC(TE.PC);
};
if (NumPCsInPCTables) {
if (NumInline8bitCounters == NumPCsInPCTables) {
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
uint8_t *Beg = ModuleCounters[i].Start;
size_t Size = ModuleCounters[i].Stop - Beg;
assert(Size ==
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
for (size_t j = 0; j < Size; j++)
if (Beg[j])
Observe(ModulePCTable[i].Start[j]);
}
} else if (NumGuards == NumPCsInPCTables) {
size_t GuardIdx = 1;
for (size_t i = 0; i < NumModules; i++) {
uint32_t *Beg = Modules[i].Start;
size_t Size = Modules[i].Stop - Beg;
assert(Size ==
(size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start));
for (size_t j = 0; j < Size; j++, GuardIdx++)
if (Counters()[GuardIdx])
Observe(ModulePCTable[i].Start[j]);
}
}
}
if (size_t NumClangCounters =
ClangCountersEnd() - ClangCountersBegin()) {
auto P = ClangCountersBegin();
for (size_t Idx = 0; Idx < NumClangCounters; Idx++)
if (P[Idx])
ObservePC((uintptr_t)Idx);
}
for (size_t i = 0, N = Min(CoveredFuncs.size(), NumPrintNewFuncs); i < N; i++) {
Printf("\tNEW_FUNC[%zd/%zd]: ", i, CoveredFuncs.size());
PrintPC("%p %F %L\n", "%p\n", CoveredFuncs[i] + 1);
}
}
inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) {
// TODO: this implementation is x86 only.
// see sanitizer_common GetPreviousInstructionPc for full implementation.
return PC - 1;
}
inline ALWAYS_INLINE uintptr_t GetNextInstructionPc(uintptr_t PC) {
// TODO: this implementation is x86 only.
// see sanitizer_common GetPreviousInstructionPc for full implementation.
return PC + 1;
}
static std::string GetModuleName(uintptr_t PC) {
char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++?
void *OffsetRaw = nullptr;
if (!EF->__sanitizer_get_module_and_offset_for_pc(
reinterpret_cast<void *>(PC), ModulePathRaw,
sizeof(ModulePathRaw), &OffsetRaw))
return "";
return ModulePathRaw;
}
void TracePC::PrintCoverage() {
if (!EF->__sanitizer_symbolize_pc ||
!EF->__sanitizer_get_module_and_offset_for_pc) {
Printf("INFO: __sanitizer_symbolize_pc or "
"__sanitizer_get_module_and_offset_for_pc is not available,"
" not printing coverage\n");
return;
}
Printf("COVERAGE:\n");
std::string LastFunctionName = "";
std::string LastFileStr = "";
Set<size_t> UncoveredLines;
Set<size_t> CoveredLines;
auto FunctionEndCallback = [&](const std::string &CurrentFunc,
const std::string &CurrentFile) {
if (LastFunctionName != CurrentFunc) {
if (CoveredLines.empty() && !UncoveredLines.empty()) {
Printf("UNCOVERED_FUNC: %s\n", LastFunctionName.c_str());
} else {
for (auto Line : UncoveredLines) {
if (!CoveredLines.count(Line))
Printf("UNCOVERED_LINE: %s %s:%zd\n", LastFunctionName.c_str(),
LastFileStr.c_str(), Line);
}
}
UncoveredLines.clear();
CoveredLines.clear();
LastFunctionName = CurrentFunc;
LastFileStr = CurrentFile;
}
};
for (size_t i = 0; i < NumPCTables; i++) {
auto &M = ModulePCTable[i];
assert(M.Start < M.Stop);
auto ModuleName = GetModuleName(M.Start->PC);
for (auto Ptr = M.Start; Ptr < M.Stop; Ptr++) {
auto PC = Ptr->PC;
auto VisualizePC = GetNextInstructionPc(PC);
bool IsObserved = ObservedPCs.count(PC);
std::string FileStr = DescribePC("%s", VisualizePC);
if (!IsInterestingCoverageFile(FileStr)) continue;
std::string FunctionStr = DescribePC("%F", VisualizePC);
FunctionEndCallback(FunctionStr, FileStr);
std::string LineStr = DescribePC("%l", VisualizePC);
size_t Line = std::stoul(LineStr);
if (IsObserved && CoveredLines.insert(Line).second)
Printf("COVERED: %s %s:%zd\n", FunctionStr.c_str(), FileStr.c_str(),
Line);
else
UncoveredLines.insert(Line);
}
}
FunctionEndCallback("", "");
}
void TracePC::DumpCoverage() {
if (EF->__sanitizer_dump_coverage) {
Vector<uintptr_t> PCsCopy(GetNumPCs());
for (size_t i = 0; i < GetNumPCs(); i++)
PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0;
EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size());
}
}
// Value profile.
// We keep track of various values that affect control flow.
// These values are inserted into a bit-set-based hash map.
// Every new bit in the map is treated as a new coverage.
//
// For memcmp/strcmp/etc the interesting value is the length of the common
// prefix of the parameters.
// For cmp instructions the interesting value is a XOR of the parameters.
// The interesting value is mixed up with the PC and is then added to the map.
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
size_t n, bool StopAtZero) {
if (!n) return;
size_t Len = std::min(n, Word::GetMaxSize());
const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1);
const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2);
uint8_t B1[Word::kMaxSize];
uint8_t B2[Word::kMaxSize];
// Copy the data into locals in this non-msan-instrumented function
// to avoid msan complaining further.
size_t Hash = 0; // Compute some simple hash of both strings.
for (size_t i = 0; i < Len; i++) {
B1[i] = A1[i];
B2[i] = A2[i];
size_t T = B1[i];
Hash ^= (T << 8) | B2[i];
}
size_t I = 0;
for (; I < Len; I++)
if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0))
break;
size_t PC = reinterpret_cast<size_t>(caller_pc);
size_t Idx = (PC & 4095) | (I << 12);
ValueProfileMap.AddValue(Idx);
TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len));
}
template <class T>
ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) {
uint64_t ArgXor = Arg1 ^ Arg2;
uint64_t ArgDistance = __builtin_popcountll(ArgXor) + 1; // [1,65]
uintptr_t Idx = ((PC & 4095) + 1) * ArgDistance;
if (sizeof(T) == 4)
TORC4.Insert(ArgXor, Arg1, Arg2);
else if (sizeof(T) == 8)
TORC8.Insert(ArgXor, Arg1, Arg2);
ValueProfileMap.AddValue(Idx);
}
static size_t InternalStrnlen(const char *S, size_t MaxLen) {
size_t Len = 0;
for (; Len < MaxLen && S[Len]; Len++) {}
return Len;
}
// Finds min of (strlen(S1), strlen(S2)).
// Needed bacause one of these strings may actually be non-zero terminated.
static size_t InternalStrnlen2(const char *S1, const char *S2) {
size_t Len = 0;
for (; S1[Len] && S2[Len]; Len++) {}
return Len;
}
void TracePC::ClearInlineCounters() {
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
uint8_t *Beg = ModuleCounters[i].Start;
size_t Size = ModuleCounters[i].Stop - Beg;
memset(Beg, 0, Size);
}
}
ATTRIBUTE_NO_SANITIZE_ALL
void TracePC::RecordInitialStack() {
int stack;
__sancov_lowest_stack = InitialStack = reinterpret_cast<uintptr_t>(&stack);
}
uintptr_t TracePC::GetMaxStackOffset() const {
return InitialStack - __sancov_lowest_stack; // Stack grows down
}
} // namespace fuzzer
extern "C" {
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
uint32_t Idx = *Guard;
__sancov_trace_pc_pcs[Idx] = PC;
__sancov_trace_pc_guard_8bit_counters[Idx]++;
}
// Best-effort support for -fsanitize-coverage=trace-pc, which is available
// in both Clang and GCC.
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
void __sanitizer_cov_trace_pc() {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
uintptr_t Idx = PC & (((uintptr_t)1 << fuzzer::TracePC::kTracePcBits) - 1);
__sancov_trace_pc_pcs[Idx] = PC;
__sancov_trace_pc_guard_8bit_counters[Idx]++;
}
ATTRIBUTE_INTERFACE
void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) {
fuzzer::TPC.HandleInit(Start, Stop);
}
ATTRIBUTE_INTERFACE
void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) {
fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop);
}
ATTRIBUTE_INTERFACE
void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg,
const uintptr_t *pcs_end) {
fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCallerCallee(PC, Callee);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
// Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic
// the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however,
// should be changed later to make full use of instrumentation.
void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Arg1, Arg2);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) {
uint64_t N = Cases[0];
uint64_t ValSizeInBits = Cases[1];
uint64_t *Vals = Cases + 2;
// Skip the most common and the most boring case.
if (Vals[N - 1] < 256 && Val < 256)
return;
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
size_t i;
uint64_t Token = 0;
for (i = 0; i < N; i++) {
Token = Val ^ Vals[i];
if (Val < Vals[i])
break;
}
if (ValSizeInBits == 16)
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint16_t>(Token), (uint16_t)(0));
else if (ValSizeInBits == 32)
fuzzer::TPC.HandleCmp(PC + i, static_cast<uint32_t>(Token), (uint32_t)(0));
else
fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0));
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_div4(uint32_t Val) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_div8(uint64_t Val) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0);
}
ATTRIBUTE_INTERFACE
ATTRIBUTE_NO_SANITIZE_ALL
ATTRIBUTE_TARGET_POPCNT
void __sanitizer_cov_trace_gep(uintptr_t Idx) {
uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0));
fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1,
const void *s2, size_t n, int result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
if (result == 0) return; // No reason to mutate.
if (n <= 1) return; // Not interesting.
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1,
const char *s2, size_t n, int result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
if (result == 0) return; // No reason to mutate.
size_t Len1 = fuzzer::InternalStrnlen(s1, n);
size_t Len2 = fuzzer::InternalStrnlen(s2, n);
n = std::min(n, Len1);
n = std::min(n, Len2);
if (n <= 1) return; // Not interesting.
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1,
const char *s2, int result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
if (result == 0) return; // No reason to mutate.
size_t N = fuzzer::InternalStrnlen2(s1, s2);
if (N <= 1) return; // Not interesting.
fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1,
const char *s2, size_t n, int result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1,
const char *s2, int result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result);
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1,
const char *s2, char *result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1,
const char *s2, char *result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2));
}
ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY
void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1,
const void *s2, size_t len2, void *result) {
if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return;
fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), len2);
}
} // extern "C"
|