1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
//===- FuzzerTracePC.h - Internal header for the Fuzzer ---------*- C++ -* ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// fuzzer::TracePC
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZER_TRACE_PC
#define LLVM_FUZZER_TRACE_PC
#include "FuzzerDefs.h"
#include "FuzzerDictionary.h"
#include "FuzzerValueBitMap.h"
#include <set>
namespace fuzzer {
// TableOfRecentCompares (TORC) remembers the most recently performed
// comparisons of type T.
// We record the arguments of CMP instructions in this table unconditionally
// because it seems cheaper this way than to compute some expensive
// conditions inside __sanitizer_cov_trace_cmp*.
// After the unit has been executed we may decide to use the contents of
// this table to populate a Dictionary.
template<class T, size_t kSizeT>
struct TableOfRecentCompares {
static const size_t kSize = kSizeT;
struct Pair {
T A, B;
};
ATTRIBUTE_NO_SANITIZE_ALL
void Insert(size_t Idx, const T &Arg1, const T &Arg2) {
Idx = Idx % kSize;
Table[Idx].A = Arg1;
Table[Idx].B = Arg2;
}
Pair Get(size_t I) { return Table[I % kSize]; }
Pair Table[kSize];
};
template <size_t kSizeT>
struct MemMemTable {
static const size_t kSize = kSizeT;
Word MemMemWords[kSize];
Word EmptyWord;
void Add(const uint8_t *Data, size_t Size) {
if (Size <= 2) return;
Size = std::min(Size, Word::GetMaxSize());
size_t Idx = SimpleFastHash(Data, Size) % kSize;
MemMemWords[Idx].Set(Data, Size);
}
const Word &Get(size_t Idx) {
for (size_t i = 0; i < kSize; i++) {
const Word &W = MemMemWords[(Idx + i) % kSize];
if (W.size()) return W;
}
EmptyWord.Set(nullptr, 0);
return EmptyWord;
}
};
class TracePC {
public:
static const size_t kNumPCs = 1 << 21;
// How many bits of PC are used from __sanitizer_cov_trace_pc.
static const size_t kTracePcBits = 18;
void HandleInit(uint32_t *Start, uint32_t *Stop);
void HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop);
void HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop);
void HandleCallerCallee(uintptr_t Caller, uintptr_t Callee);
template <class T> void HandleCmp(uintptr_t PC, T Arg1, T Arg2);
size_t GetTotalPCCoverage();
void SetUseCounters(bool UC) { UseCounters = UC; }
void SetUseClangCoverage(bool UCC) { UseClangCoverage = UCC; }
void SetUseValueProfile(bool VP) { UseValueProfile = VP; }
void SetPrintNewPCs(bool P) { DoPrintNewPCs = P; }
void SetPrintNewFuncs(size_t P) { NumPrintNewFuncs = P; }
void UpdateObservedPCs();
template <class Callback> void CollectFeatures(Callback CB) const;
void ResetMaps() {
ValueProfileMap.Reset();
if (NumModules)
memset(Counters(), 0, GetNumPCs());
ClearExtraCounters();
ClearInlineCounters();
if (UseClangCoverage)
ClearClangCounters();
}
void ClearInlineCounters();
void UpdateFeatureSet(size_t CurrentElementIdx, size_t CurrentElementSize);
void PrintFeatureSet();
void PrintModuleInfo();
void PrintCoverage();
void DumpCoverage();
void AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2,
size_t n, bool StopAtZero);
TableOfRecentCompares<uint32_t, 32> TORC4;
TableOfRecentCompares<uint64_t, 32> TORC8;
TableOfRecentCompares<Word, 32> TORCW;
MemMemTable<1024> MMT;
size_t GetNumPCs() const {
return NumGuards == 0 ? (1 << kTracePcBits) : Min(kNumPCs, NumGuards + 1);
}
uintptr_t GetPC(size_t Idx) {
assert(Idx < GetNumPCs());
return PCs()[Idx];
}
void RecordInitialStack();
uintptr_t GetMaxStackOffset() const;
template<class CallBack>
void ForEachObservedPC(CallBack CB) {
for (auto PC : ObservedPCs)
CB(PC);
}
private:
bool UseCounters = false;
bool UseValueProfile = false;
bool UseClangCoverage = false;
bool DoPrintNewPCs = false;
size_t NumPrintNewFuncs = 0;
struct Module {
uint32_t *Start, *Stop;
};
Module Modules[4096];
size_t NumModules; // linker-initialized.
size_t NumGuards; // linker-initialized.
struct { uint8_t *Start, *Stop; } ModuleCounters[4096];
size_t NumModulesWithInline8bitCounters; // linker-initialized.
size_t NumInline8bitCounters;
struct PCTableEntry {
uintptr_t PC, PCFlags;
};
struct { const PCTableEntry *Start, *Stop; } ModulePCTable[4096];
size_t NumPCTables;
size_t NumPCsInPCTables;
uint8_t *Counters() const;
uintptr_t *PCs() const;
Set<uintptr_t> ObservedPCs;
Set<uintptr_t> ObservedFuncs;
ValueBitMap ValueProfileMap;
uintptr_t InitialStack;
};
template <class Callback>
// void Callback(size_t FirstFeature, size_t Idx, uint8_t Value);
ATTRIBUTE_NO_SANITIZE_ALL
void ForEachNonZeroByte(const uint8_t *Begin, const uint8_t *End,
size_t FirstFeature, Callback Handle8bitCounter) {
typedef uintptr_t LargeType;
const size_t Step = sizeof(LargeType) / sizeof(uint8_t);
const size_t StepMask = Step - 1;
auto P = Begin;
// Iterate by 1 byte until either the alignment boundary or the end.
for (; reinterpret_cast<uintptr_t>(P) & StepMask && P < End; P++)
if (uint8_t V = *P)
Handle8bitCounter(FirstFeature, P - Begin, V);
// Iterate by Step bytes at a time.
for (; P < End; P += Step)
if (LargeType Bundle = *reinterpret_cast<const LargeType *>(P))
for (size_t I = 0; I < Step; I++, Bundle >>= 8)
if (uint8_t V = Bundle & 0xff)
Handle8bitCounter(FirstFeature, P - Begin + I, V);
// Iterate by 1 byte until the end.
for (; P < End; P++)
if (uint8_t V = *P)
Handle8bitCounter(FirstFeature, P - Begin, V);
}
// Given a non-zero Counter returns a number in the range [0,7].
template<class T>
unsigned CounterToFeature(T Counter) {
// Returns a feature number by placing Counters into buckets as illustrated
// below.
//
// Counter bucket: [1] [2] [3] [4-7] [8-15] [16-31] [32-127] [128+]
// Feature number: 0 1 2 3 4 5 6 7
//
// This is a heuristic taken from AFL (see
// http://lcamtuf.coredump.cx/afl/technical_details.txt).
//
// This implementation may change in the future so clients should
// not rely on it.
assert(Counter);
unsigned Bit = 0;
/**/ if (Counter >= 128) Bit = 7;
else if (Counter >= 32) Bit = 6;
else if (Counter >= 16) Bit = 5;
else if (Counter >= 8) Bit = 4;
else if (Counter >= 4) Bit = 3;
else if (Counter >= 3) Bit = 2;
else if (Counter >= 2) Bit = 1;
return Bit;
}
template <class Callback> // void Callback(size_t Feature)
ATTRIBUTE_NO_SANITIZE_ADDRESS
__attribute__((noinline))
void TracePC::CollectFeatures(Callback HandleFeature) const {
uint8_t *Counters = this->Counters();
size_t N = GetNumPCs();
auto Handle8bitCounter = [&](size_t FirstFeature,
size_t Idx, uint8_t Counter) {
if (UseCounters)
HandleFeature(FirstFeature + Idx * 8 + CounterToFeature(Counter));
else
HandleFeature(FirstFeature + Idx);
};
size_t FirstFeature = 0;
if (!NumInline8bitCounters) {
ForEachNonZeroByte(Counters, Counters + N, FirstFeature, Handle8bitCounter);
FirstFeature += N * 8;
}
if (NumInline8bitCounters) {
for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) {
ForEachNonZeroByte(ModuleCounters[i].Start, ModuleCounters[i].Stop,
FirstFeature, Handle8bitCounter);
FirstFeature += 8 * (ModuleCounters[i].Stop - ModuleCounters[i].Start);
}
}
if (size_t NumClangCounters = ClangCountersEnd() - ClangCountersBegin()) {
auto P = ClangCountersBegin();
for (size_t Idx = 0; Idx < NumClangCounters; Idx++)
if (auto Cnt = P[Idx]) {
if (UseCounters)
HandleFeature(FirstFeature + Idx * 8 + CounterToFeature(Cnt));
else
HandleFeature(FirstFeature + Idx);
}
FirstFeature += NumClangCounters;
}
ForEachNonZeroByte(ExtraCountersBegin(), ExtraCountersEnd(), FirstFeature,
Handle8bitCounter);
FirstFeature += (ExtraCountersEnd() - ExtraCountersBegin()) * 8;
if (UseValueProfile) {
ValueProfileMap.ForEach([&](size_t Idx) {
HandleFeature(FirstFeature + Idx);
});
FirstFeature += ValueProfileMap.SizeInBits();
}
// Step function, grows similar to 8 * Log_2(A).
auto StackDepthStepFunction = [](uint32_t A) -> uint32_t {
if (!A) return A;
uint32_t Log2 = Log(A);
if (Log2 < 3) return A;
Log2 -= 3;
return (Log2 + 1) * 8 + ((A >> Log2) & 7);
};
assert(StackDepthStepFunction(1024) == 64);
assert(StackDepthStepFunction(1024 * 4) == 80);
assert(StackDepthStepFunction(1024 * 1024) == 144);
if (auto MaxStackOffset = GetMaxStackOffset())
HandleFeature(FirstFeature + StackDepthStepFunction(MaxStackOffset / 8));
}
extern TracePC TPC;
} // namespace fuzzer
#endif // LLVM_FUZZER_TRACE_PC
|