1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
//===-- hwasan_allocator.cc --------------------------- ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// HWAddressSanitizer allocator.
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_atomic.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_thread.h"
#include "hwasan_poisoning.h"
namespace __hwasan {
enum {
CHUNK_INVALID = 0,
CHUNK_FREE = 1,
CHUNK_ALLOCATED = 2
};
struct Metadata {
u64 state : 2;
u64 requested_size : 62;
u32 alloc_context_id;
u32 free_context_id;
};
bool HwasanChunkView::IsValid() const {
return metadata_ && metadata_->state != CHUNK_INVALID;
}
bool HwasanChunkView::IsAllocated() const {
return metadata_ && metadata_->state == CHUNK_ALLOCATED;
}
uptr HwasanChunkView::Beg() const {
return block_;
}
uptr HwasanChunkView::End() const {
return Beg() + UsedSize();
}
uptr HwasanChunkView::UsedSize() const {
return metadata_->requested_size;
}
u32 HwasanChunkView::GetAllocStackId() const {
return metadata_->alloc_context_id;
}
u32 HwasanChunkView::GetFreeStackId() const {
return metadata_->free_context_id;
}
struct HwasanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {}
void OnUnmap(uptr p, uptr size) const {
// We are about to unmap a chunk of user memory.
// It can return as user-requested mmap() or another thread stack.
// Make it accessible with zero-tagged pointer.
TagMemory(p, size, 0);
}
};
#if !defined(__aarch64__)
#error unsupported platform
#endif
static const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G
static const uptr kRegionSizeLog = 20;
static const uptr kNumRegions = SANITIZER_MMAP_RANGE_SIZE >> kRegionSizeLog;
typedef TwoLevelByteMap<(kNumRegions >> 12), 1 << 12> ByteMap;
struct AP32 {
static const uptr kSpaceBeg = 0;
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
static const uptr kMetadataSize = sizeof(Metadata);
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
static const uptr kRegionSizeLog = __hwasan::kRegionSizeLog;
typedef __hwasan::ByteMap ByteMap;
typedef HwasanMapUnmapCallback MapUnmapCallback;
static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<HwasanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
static Allocator allocator;
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
static atomic_uint8_t hwasan_allocator_tagging_enabled;
void HwasanAllocatorInit() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
!flags()->disable_allocator_tagging);
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.Init(common_flags()->allocator_release_to_os_interval_ms);
}
AllocatorCache *GetAllocatorCache(HwasanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator_cache);
}
void HwasanThreadLocalMallocStorage::CommitBack() {
allocator.SwallowCache(GetAllocatorCache(this));
}
static void *HwasanAllocate(StackTrace *stack, uptr size, uptr alignment,
bool zeroise) {
alignment = Max(alignment, kShadowAlignment);
size = RoundUpTo(size, kShadowAlignment);
if (size > kMaxAllowedMallocSize) {
Report("WARNING: HWAddressSanitizer failed to allocate %p bytes\n",
(void *)size);
return Allocator::FailureHandler::OnBadRequest();
}
HwasanThread *t = GetCurrentThread();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, size, alignment);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, size, alignment);
}
Metadata *meta =
reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
meta->state = CHUNK_ALLOCATED;
meta->requested_size = size;
meta->alloc_context_id = StackDepotPut(*stack);
if (zeroise)
internal_memset(allocated, 0, size);
void *user_ptr = (flags()->tag_in_malloc &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
? (void *)TagMemoryAligned((uptr)allocated, size, 0xBB)
: allocated;
HWASAN_MALLOC_HOOK(user_ptr, size);
return user_ptr;
}
void HwasanDeallocate(StackTrace *stack, void *user_ptr) {
CHECK(user_ptr);
HWASAN_FREE_HOOK(user_ptr);
void *p = GetAddressFromPointer(user_ptr);
Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p));
uptr size = meta->requested_size;
meta->state = CHUNK_FREE;
meta->requested_size = 0;
meta->free_context_id = StackDepotPut(*stack);
// This memory will not be reused by anyone else, so we are free to keep it
// poisoned.
if (flags()->tag_in_free &&
atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
TagMemoryAligned((uptr)p, size, 0xBC);
HwasanThread *t = GetCurrentThread();
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocator.Deallocate(cache, p);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocator.Deallocate(cache, p);
}
}
void *HwasanReallocate(StackTrace *stack, void *user_old_p, uptr new_size,
uptr alignment) {
alignment = Max(alignment, kShadowAlignment);
new_size = RoundUpTo(new_size, kShadowAlignment);
void *old_p = GetAddressFromPointer(user_old_p);
Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(old_p));
uptr old_size = meta->requested_size;
uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p);
if (new_size <= actually_allocated_size) {
// We are not reallocating here.
// FIXME: update stack trace for the allocation?
meta->requested_size = new_size;
if (!atomic_load_relaxed(&hwasan_allocator_tagging_enabled))
return user_old_p;
if (flags()->retag_in_realloc)
return (void *)TagMemoryAligned((uptr)old_p, new_size, 0xCC);
if (new_size > old_size) {
tag_t tag = GetTagFromPointer((uptr)user_old_p);
TagMemoryAligned((uptr)old_p + old_size, new_size - old_size, tag);
}
return user_old_p;
}
uptr memcpy_size = Min(new_size, old_size);
void *new_p = HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
if (new_p) {
internal_memcpy(new_p, old_p, memcpy_size);
HwasanDeallocate(stack, old_p);
}
return new_p;
}
HwasanChunkView FindHeapChunkByAddress(uptr address) {
void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
if (!block)
return HwasanChunkView();
Metadata *metadata =
reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
}
static uptr AllocationSize(const void *user_ptr) {
const void *p = GetAddressFromPointer(user_ptr);
if (!p) return 0;
const void *beg = allocator.GetBlockBegin(p);
if (beg != p) return 0;
Metadata *b = (Metadata *)allocator.GetMetaData(p);
return b->requested_size;
}
void *hwasan_malloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
}
void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb)))
return SetErrnoOnNull(Allocator::FailureHandler::OnBadRequest());
return SetErrnoOnNull(HwasanAllocate(stack, nmemb * size, sizeof(u64), true));
}
void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
if (!ptr)
return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
if (size == 0) {
HwasanDeallocate(stack, ptr);
return nullptr;
}
return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
}
void *hwasan_valloc(uptr size, StackTrace *stack) {
return SetErrnoOnNull(HwasanAllocate(stack, size, GetPageSizeCached(), false));
}
void *hwasan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
return Allocator::FailureHandler::OnBadRequest();
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
}
void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
return Allocator::FailureHandler::OnBadRequest();
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
return Allocator::FailureHandler::OnBadRequest();
}
return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
}
int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
Allocator::FailureHandler::OnBadRequest();
return errno_EINVAL;
}
void *ptr = HwasanAllocate(stack, size, alignment, false);
if (UNLIKELY(!ptr))
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
} // namespace __hwasan
using namespace __hwasan;
void __hwasan_enable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
}
void __hwasan_disable_allocator_tagging() {
atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
}
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
uptr __sanitizer_get_free_bytes() { return 1; }
uptr __sanitizer_get_unmapped_bytes() { return 1; }
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
|