| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 
 | =============================
User Guide for NVPTX Back-end
=============================
.. contents::
   :local:
   :depth: 3
Introduction
============
To support GPU programming, the NVPTX back-end supports a subset of LLVM IR
along with a defined set of conventions used to represent GPU programming
concepts. This document provides an overview of the general usage of the back-
end, including a description of the conventions used and the set of accepted
LLVM IR.
.. note:: 
   
   This document assumes a basic familiarity with CUDA and the PTX
   assembly language. Information about the CUDA Driver API and the PTX assembly
   language can be found in the `CUDA documentation
   <http://docs.nvidia.com/cuda/index.html>`_.
Conventions
===========
Marking Functions as Kernels
----------------------------
In PTX, there are two types of functions: *device functions*, which are only
callable by device code, and *kernel functions*, which are callable by host
code. By default, the back-end will emit device functions. Metadata is used to
declare a function as a kernel function. This metadata is attached to the
``nvvm.annotations`` named metadata object, and has the following format:
.. code-block:: text
   !0 = !{<function-ref>, metadata !"kernel", i32 1}
The first parameter is a reference to the kernel function. The following
example shows a kernel function calling a device function in LLVM IR. The
function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not.
.. code-block:: llvm
    define float @my_fmad(float %x, float %y, float %z) {
      %mul = fmul float %x, %y
      %add = fadd float %mul, %z
      ret float %add
    }
    define void @my_kernel(float* %ptr) {
      %val = load float, float* %ptr
      %ret = call float @my_fmad(float %val, float %val, float %val)
      store float %ret, float* %ptr
      ret void
    }
    !nvvm.annotations = !{!1}
    !1 = !{void (float*)* @my_kernel, !"kernel", i32 1}
When compiled, the PTX kernel functions are callable by host-side code.
.. _address_spaces:
Address Spaces
--------------
The NVPTX back-end uses the following address space mapping:
   ============= ======================
   Address Space Memory Space
   ============= ======================
   0             Generic
   1             Global
   2             Internal Use
   3             Shared
   4             Constant
   5             Local
   ============= ======================
Every global variable and pointer type is assigned to one of these address
spaces, with 0 being the default address space. Intrinsics are provided which
can be used to convert pointers between the generic and non-generic address
spaces.
As an example, the following IR will define an array ``@g`` that resides in
global device memory.
.. code-block:: llvm
    @g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ]
LLVM IR functions can read and write to this array, and host-side code can
copy data to it by name with the CUDA Driver API.
Note that since address space 0 is the generic space, it is illegal to have
global variables in address space 0.  Address space 0 is the default address
space in LLVM, so the ``addrspace(N)`` annotation is *required* for global
variables.
Triples
-------
The NVPTX target uses the module triple to select between 32/64-bit code
generation and the driver-compiler interface to use. The triple architecture
can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The
operating system should be one of ``cuda`` or ``nvcl``, which determines the
interface used by the generated code to communicate with the driver.  Most
users will want to use ``cuda`` as the operating system, which makes the
generated PTX compatible with the CUDA Driver API.
Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda``
Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda``
.. _nvptx_intrinsics:
NVPTX Intrinsics
================
Address Space Conversion
------------------------
'``llvm.nvvm.ptr.*.to.gen``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
These are overloaded intrinsics.  You can use these on any pointer types.
.. code-block:: llvm
    declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*)
    declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*)
    declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*)
    declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*)
Overview:
"""""""""
The '``llvm.nvvm.ptr.*.to.gen``' intrinsics convert a pointer in a non-generic
address space to a generic address space pointer.
Semantics:
""""""""""
These intrinsics modify the pointer value to be a valid generic address space
pointer.
'``llvm.nvvm.ptr.gen.to.*``' Intrinsics
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
These are overloaded intrinsics.  You can use these on any pointer types.
.. code-block:: llvm
    declare i8 addrspace(1)* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8*)
    declare i8 addrspace(3)* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8*)
    declare i8 addrspace(4)* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8*)
    declare i8 addrspace(5)* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8*)
Overview:
"""""""""
The '``llvm.nvvm.ptr.gen.to.*``' intrinsics convert a pointer in the generic
address space to a pointer in the target address space.  Note that these
intrinsics are only useful if the address space of the target address space of
the pointer is known.  It is not legal to use address space conversion
intrinsics to convert a pointer from one non-generic address space to another
non-generic address space.
Semantics:
""""""""""
These intrinsics modify the pointer value to be a valid pointer in the target
non-generic address space.
Reading PTX Special Registers
-----------------------------
'``llvm.nvvm.read.ptx.sreg.*``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.tid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y()
    declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z()
    declare i32 @llvm.nvvm.read.ptx.sreg.warpsize()
Overview:
"""""""""
The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX
special registers, in particular the kernel launch bounds.  These registers
map in the following way to CUDA builtins:
   ============ =====================================
   CUDA Builtin PTX Special Register Intrinsic
   ============ =====================================
   ``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*``
   ``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*``
   ``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*``
   ``gridDim``  ``@llvm.nvvm.read.ptx.sreg.nctaid.*``
   ============ =====================================
Barriers
--------
'``llvm.nvvm.barrier0``'
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Syntax:
"""""""
.. code-block:: llvm
  declare void @llvm.nvvm.barrier0()
Overview:
"""""""""
The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0``
instruction, equivalent to the ``__syncthreads()`` call in CUDA.
Other Intrinsics
----------------
For the full set of NVPTX intrinsics, please see the
``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree.
.. _libdevice:
Linking with Libdevice
======================
The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that
implements many common mathematical functions. This library can be used as a
high-performance math library for any compilers using the LLVM NVPTX target.
The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and
there is a separate version for each compute architecture.
For a list of all math functions implemented in libdevice, see
`libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_.
To accommodate various math-related compiler flags that can affect code
generation of libdevice code, the library code depends on a special LLVM IR
pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This
pass looks for calls to the ``@__nvvm_reflect`` function and replaces them
with constants based on the defined reflection parameters. Such conditional
code often follows a pattern:
.. code-block:: c++
  float my_function(float a) {
    if (__nvvm_reflect("FASTMATH"))
      return my_function_fast(a);
    else
      return my_function_precise(a);
  }
The default value for all unspecified reflection parameters is zero.
The ``NVVMReflect`` pass should be executed early in the optimization
pipeline, immediately after the link stage. The ``internalize`` pass is also
recommended to remove unused math functions from the resulting PTX. For an
input IR module ``module.bc``, the following compilation flow is recommended:
1. Save list of external functions in ``module.bc``
2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc``
3. Internalize all functions not in list from (1)
4. Eliminate all unused internal functions
5. Run ``NVVMReflect`` pass
6. Run standard optimization pipeline
.. note::
  ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the
  libdevice functions. It is possible to link two IR modules that have been
  linked against libdevice using different reflection variables.
Since the ``NVVMReflect`` pass replaces conditionals with constants, it will
often leave behind dead code of the form:
.. code-block:: llvm
  entry:
    ..
    br i1 true, label %foo, label %bar
  foo:
    ..
  bar:
    ; Dead code
    ..
Therefore, it is recommended that ``NVVMReflect`` is executed early in the
optimization pipeline before dead-code elimination.
The NVPTX TargetMachine knows how to schedule ``NVVMReflect`` at the beginning
of your pass manager; just use the following code when setting up your pass
manager:
.. code-block:: c++
    std::unique_ptr<TargetMachine> TM = ...;
    PassManagerBuilder PMBuilder(...);
    if (TM)
      TM->adjustPassManager(PMBuilder);
Reflection Parameters
---------------------
The libdevice library currently uses the following reflection parameters to
control code generation:
==================== ======================================================
Flag                 Description
==================== ======================================================
``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero
==================== ======================================================
The value of this flag is determined by the "nvvm-reflect-ftz" module flag.
The following sets the ftz flag to 1.
.. code-block:: llvm
    !llvm.module.flag = !{!0}
    !0 = !{i32 4, !"nvvm-reflect-ftz", i32 1}
(``i32 4`` indicates that the value set here overrides the value in another
module we link with.  See the `LangRef <LangRef.html#module-flags-metadata>`
for details.)
Executing PTX
=============
The most common way to execute PTX assembly on a GPU device is to use the CUDA
Driver API. This API is a low-level interface to the GPU driver and allows for
JIT compilation of PTX code to native GPU machine code.
Initializing the Driver API:
.. code-block:: c++
    CUdevice device;
    CUcontext context;
    // Initialize the driver API
    cuInit(0);
    // Get a handle to the first compute device
    cuDeviceGet(&device, 0);
    // Create a compute device context
    cuCtxCreate(&context, 0, device);
JIT compiling a PTX string to a device binary:
.. code-block:: c++
    CUmodule module;
    CUfunction function;
    // JIT compile a null-terminated PTX string
    cuModuleLoadData(&module, (void*)PTXString);
    // Get a handle to the "myfunction" kernel function
    cuModuleGetFunction(&function, module, "myfunction");
For full examples of executing PTX assembly, please see the `CUDA Samples
<https://developer.nvidia.com/cuda-downloads>`_ distribution.
Common Issues
=============
ptxas complains of undefined function: __nvvm_reflect
-----------------------------------------------------
When linking with libdevice, the ``NVVMReflect`` pass must be used. See
:ref:`libdevice` for more information.
Tutorial: A Simple Compute Kernel
=================================
To start, let us take a look at a simple compute kernel written directly in
LLVM IR. The kernel implements vector addition, where each thread computes one
element of the output vector C from the input vectors A and B.  To make this
easier, we also assume that only a single CTA (thread block) will be launched,
and that it will be one dimensional.
The Kernel
----------
.. code-block:: llvm
  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
  target triple = "nvptx64-nvidia-cuda"
  ; Intrinsic to read X component of thread ID
  declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
  define void @kernel(float addrspace(1)* %A,
                      float addrspace(1)* %B,
                      float addrspace(1)* %C) {
  entry:
    ; What is my ID?
    %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
    ; Compute pointers into A, B, and C
    %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
    %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
    %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id
    ; Read A, B
    %valA = load float, float addrspace(1)* %ptrA, align 4
    %valB = load float, float addrspace(1)* %ptrB, align 4
    ; Compute C = A + B
    %valC = fadd float %valA, %valB
    ; Store back to C
    store float %valC, float addrspace(1)* %ptrC, align 4
    ret void
  }
  !nvvm.annotations = !{!0}
  !0 = !{void (float addrspace(1)*,
               float addrspace(1)*,
               float addrspace(1)*)* @kernel, !"kernel", i32 1}
We can use the LLVM ``llc`` tool to directly run the NVPTX code generator:
.. code-block:: text
  # llc -mcpu=sm_20 kernel.ll -o kernel.ptx
.. note::
  If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32``
  in the module data layout string and use ``nvptx-nvidia-cuda`` as the
  target triple.
The output we get from ``llc`` (as of LLVM 3.4):
.. code-block:: text
  //
  // Generated by LLVM NVPTX Back-End
  //
  .version 3.1
  .target sm_20
  .address_size 64
    // .globl kernel
                                          // @kernel
  .visible .entry kernel(
    .param .u64 kernel_param_0,
    .param .u64 kernel_param_1,
    .param .u64 kernel_param_2
  )
  {
    .reg .f32   %f<4>;
    .reg .s32   %r<2>;
    .reg .s64   %rl<8>;
  // %bb.0:                                // %entry
    ld.param.u64    %rl1, [kernel_param_0];
    mov.u32         %r1, %tid.x;
    mul.wide.s32    %rl2, %r1, 4;
    add.s64         %rl3, %rl1, %rl2;
    ld.param.u64    %rl4, [kernel_param_1];
    add.s64         %rl5, %rl4, %rl2;
    ld.param.u64    %rl6, [kernel_param_2];
    add.s64         %rl7, %rl6, %rl2;
    ld.global.f32   %f1, [%rl3];
    ld.global.f32   %f2, [%rl5];
    add.f32         %f3, %f1, %f2;
    st.global.f32   [%rl7], %f3;
    ret;
  }
Dissecting the Kernel
---------------------
Now let us dissect the LLVM IR that makes up this kernel. 
Data Layout
^^^^^^^^^^^
The data layout string determines the size in bits of common data types, their
ABI alignment, and their storage size.  For NVPTX, you should use one of the
following:
32-bit PTX:
.. code-block:: llvm
  target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
64-bit PTX:
.. code-block:: llvm
  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
Target Intrinsics
^^^^^^^^^^^^^^^^^
In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to
read the X component of the current thread's ID, which corresponds to a read
of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of
intrinsics.  A short list is shown below; please see
``include/llvm/IR/IntrinsicsNVVM.td`` for the full list.
================================================ ====================
Intrinsic                                        CUDA Equivalent
================================================ ====================
``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}``     threadIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}``   blockIdx.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}``    blockDim.{x,y,z}
``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}``  gridDim.{x,y,z}
``void @llvm.nvvm.barrier0()``                   __syncthreads()
================================================ ====================
Address Spaces
^^^^^^^^^^^^^^
You may have noticed that all of the pointer types in the LLVM IR example had
an explicit address space specifier. What is address space 1? NVIDIA GPU
devices (generally) have four types of memory:
- Global: Large, off-chip memory
- Shared: Small, on-chip memory shared among all threads in a CTA
- Local: Per-thread, private memory
- Constant: Read-only memory shared across all threads
These different types of memory are represented in LLVM IR as address spaces.
There is also a fifth address space used by the NVPTX code generator that
corresponds to the "generic" address space.  This address space can represent
addresses in any other address space (with a few exceptions).  This allows
users to write IR functions that can load/store memory using the same
instructions. Intrinsics are provided to convert pointers between the generic
and non-generic address spaces.
See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information.
Kernel Metadata
^^^^^^^^^^^^^^^
In PTX, a function can be either a `kernel` function (callable from the host
program), or a `device` function (callable only from GPU code). You can think
of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR
function as a `kernel` function, we make use of special LLVM metadata. The
NVPTX back-end will look for a named metadata node called
``nvvm.annotations``. This named metadata must contain a list of metadata that
describe the IR. For our purposes, we need to declare a metadata node that
assigns the "kernel" attribute to the LLVM IR function that should be emitted
as a PTX `kernel` function. These metadata nodes take the form:
.. code-block:: text
  !{<function ref>, metadata !"kernel", i32 1}
For the previous example, we have:
.. code-block:: llvm
  !nvvm.annotations = !{!0}
  !0 = !{void (float addrspace(1)*,
               float addrspace(1)*,
               float addrspace(1)*)* @kernel, !"kernel", i32 1}
Here, we have a single metadata declaration in ``nvvm.annotations``. This
metadata annotates our ``@kernel`` function with the ``kernel`` attribute.
Running the Kernel
------------------
Generating PTX from LLVM IR is all well and good, but how do we execute it on
a real GPU device? The CUDA Driver API provides a convenient mechanism for
loading and JIT compiling PTX to a native GPU device, and launching a kernel.
The API is similar to OpenCL.  A simple example showing how to load and
execute our vector addition code is shown below. Note that for brevity this
code does not perform much error checking!
.. note::
  You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline
  compile PTX to machine code (SASS) for a specific GPU architecture. Such
  binaries can be loaded by the CUDA Driver API in the same way as PTX. This
  can be useful for reducing startup time by precompiling the PTX kernels.
.. code-block:: c++
  #include <iostream>
  #include <fstream>
  #include <cassert>
  #include "cuda.h"
  void checkCudaErrors(CUresult err) {
    assert(err == CUDA_SUCCESS);
  }
  /// main - Program entry point
  int main(int argc, char **argv) {
    CUdevice    device;
    CUmodule    cudaModule;
    CUcontext   context;
    CUfunction  function;
    CUlinkState linker;
    int         devCount;
    // CUDA initialization
    checkCudaErrors(cuInit(0));
    checkCudaErrors(cuDeviceGetCount(&devCount));
    checkCudaErrors(cuDeviceGet(&device, 0));
    char name[128];
    checkCudaErrors(cuDeviceGetName(name, 128, device));
    std::cout << "Using CUDA Device [0]: " << name << "\n";
    int devMajor, devMinor;
    checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
    std::cout << "Device Compute Capability: "
              << devMajor << "." << devMinor << "\n";
    if (devMajor < 2) {
      std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
      return 1;
    }
    std::ifstream t("kernel.ptx");
    if (!t.is_open()) {
      std::cerr << "kernel.ptx not found\n";
      return 1;
    }
    std::string str((std::istreambuf_iterator<char>(t)),
                      std::istreambuf_iterator<char>());
    // Create driver context
    checkCudaErrors(cuCtxCreate(&context, 0, device));
    // Create module for object
    checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0));
    // Get kernel function
    checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel"));
    // Device data
    CUdeviceptr devBufferA;
    CUdeviceptr devBufferB;
    CUdeviceptr devBufferC;
    checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16));
    checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16));
    checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16));
    float* hostA = new float[16];
    float* hostB = new float[16];
    float* hostC = new float[16];
    // Populate input
    for (unsigned i = 0; i != 16; ++i) {
      hostA[i] = (float)i;
      hostB[i] = (float)(2*i);
      hostC[i] = 0.0f;
    }
    checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16));
    checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16));
    unsigned blockSizeX = 16;
    unsigned blockSizeY = 1;
    unsigned blockSizeZ = 1;
    unsigned gridSizeX  = 1;
    unsigned gridSizeY  = 1;
    unsigned gridSizeZ  = 1;
    // Kernel parameters
    void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC };
    std::cout << "Launching kernel\n";
    // Kernel launch
    checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ,
                                   blockSizeX, blockSizeY, blockSizeZ,
                                   0, NULL, KernelParams, NULL));
    // Retrieve device data
    checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16));
    std::cout << "Results:\n";
    for (unsigned i = 0; i != 16; ++i) {
      std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n";
    }
    // Clean up after ourselves
    delete [] hostA;
    delete [] hostB;
    delete [] hostC;
    // Clean-up
    checkCudaErrors(cuMemFree(devBufferA));
    checkCudaErrors(cuMemFree(devBufferB));
    checkCudaErrors(cuMemFree(devBufferC));
    checkCudaErrors(cuModuleUnload(cudaModule));
    checkCudaErrors(cuCtxDestroy(context));
    return 0;
  }
You will need to link with the CUDA driver and specify the path to cuda.h.
.. code-block:: text
  # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda
We don't need to specify a path to ``libcuda.so`` since this is installed in a
system location by the driver, not the CUDA toolkit.
If everything goes as planned, you should see the following output when
running the compiled program:
.. code-block:: text
  Using CUDA Device [0]: GeForce GTX 680
  Device Compute Capability: 3.0
  Launching kernel
  Results:
  0 + 0 = 0
  1 + 2 = 3
  2 + 4 = 6
  3 + 6 = 9
  4 + 8 = 12
  5 + 10 = 15
  6 + 12 = 18
  7 + 14 = 21
  8 + 16 = 24
  9 + 18 = 27
  10 + 20 = 30
  11 + 22 = 33
  12 + 24 = 36
  13 + 26 = 39
  14 + 28 = 42
  15 + 30 = 45
.. note::
  You will likely see a different device identifier based on your hardware
Tutorial: Linking with Libdevice
================================
In this tutorial, we show a simple example of linking LLVM IR with the
libdevice library. We will use the same kernel as the previous tutorial,
except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``.
Libdevice provides an ``__nv_powf`` function that we will use.
.. code-block:: llvm
  target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64"
  target triple = "nvptx64-nvidia-cuda"
  ; Intrinsic to read X component of thread ID
  declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
  ; libdevice function
  declare float @__nv_powf(float, float)
  define void @kernel(float addrspace(1)* %A,
                      float addrspace(1)* %B,
                      float addrspace(1)* %C) {
  entry:
    ; What is my ID?
    %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind
    ; Compute pointers into A, B, and C
    %ptrA = getelementptr float, float addrspace(1)* %A, i32 %id
    %ptrB = getelementptr float, float addrspace(1)* %B, i32 %id
    %ptrC = getelementptr float, float addrspace(1)* %C, i32 %id
    ; Read A, B
    %valA = load float, float addrspace(1)* %ptrA, align 4
    %valB = load float, float addrspace(1)* %ptrB, align 4
    ; Compute C = pow(A, B)
    %valC = call float @__nv_powf(float %valA, float %valB)
    ; Store back to C
    store float %valC, float addrspace(1)* %ptrC, align 4
    ret void
  }
  !nvvm.annotations = !{!0}
  !0 = !{void (float addrspace(1)*,
               float addrspace(1)*,
               float addrspace(1)*)* @kernel, !"kernel", i32 1}
To compile this kernel, we perform the following steps:
1. Link with libdevice
2. Internalize all but the public kernel function
3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0
4. Optimize the linked module
5. Codegen the module
These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc``
tools. In a complete compiler, these steps can also be performed entirely
programmatically by setting up an appropriate pass configuration (see
:ref:`libdevice`).
.. code-block:: text
  # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc
  # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc
  # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx
.. note::
  The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any
  undefined variables will default to zero. It is shown here for evaluation
  purposes.
This gives us the following PTX (excerpt):
.. code-block:: text
  //
  // Generated by LLVM NVPTX Back-End
  //
  .version 3.1
  .target sm_20
  .address_size 64
    // .globl kernel
                                          // @kernel
  .visible .entry kernel(
    .param .u64 kernel_param_0,
    .param .u64 kernel_param_1,
    .param .u64 kernel_param_2
  )
  {
    .reg .pred  %p<30>;
    .reg .f32   %f<111>;
    .reg .s32   %r<21>;
    .reg .s64   %rl<8>;
  // %bb.0:                                // %entry
    ld.param.u64  %rl2, [kernel_param_0];
    mov.u32   %r3, %tid.x;
    ld.param.u64  %rl3, [kernel_param_1];
    mul.wide.s32  %rl4, %r3, 4;
    add.s64   %rl5, %rl2, %rl4;
    ld.param.u64  %rl6, [kernel_param_2];
    add.s64   %rl7, %rl3, %rl4;
    add.s64   %rl1, %rl6, %rl4;
    ld.global.f32   %f1, [%rl5];
    ld.global.f32   %f2, [%rl7];
    setp.eq.f32 %p1, %f1, 0f3F800000;
    setp.eq.f32 %p2, %f2, 0f00000000;
    or.pred   %p3, %p1, %p2;
    @%p3 bra  BB0_1;
    bra.uni   BB0_2;
  BB0_1:
    mov.f32   %f110, 0f3F800000;
    st.global.f32   [%rl1], %f110;
    ret;
  BB0_2:                                  // %__nv_isnanf.exit.i
    abs.f32   %f4, %f1;
    setp.gtu.f32  %p4, %f4, 0f7F800000;
    @%p4 bra  BB0_4;
  // %bb.3:                                // %__nv_isnanf.exit5.i
    abs.f32   %f5, %f2;
    setp.le.f32 %p5, %f5, 0f7F800000;
    @%p5 bra  BB0_5;
  BB0_4:                                  // %.critedge1.i
    add.f32   %f110, %f1, %f2;
    st.global.f32   [%rl1], %f110;
    ret;
  BB0_5:                                  // %__nv_isinff.exit.i
    ...
  BB0_26:                                 // %__nv_truncf.exit.i.i.i.i.i
    mul.f32   %f90, %f107, 0f3FB8AA3B;
    cvt.rzi.f32.f32 %f91, %f90;
    mov.f32   %f92, 0fBF317200;
    fma.rn.f32  %f93, %f91, %f92, %f107;
    mov.f32   %f94, 0fB5BFBE8E;
    fma.rn.f32  %f95, %f91, %f94, %f93;
    mul.f32   %f89, %f95, 0f3FB8AA3B;
    // inline asm
    ex2.approx.ftz.f32 %f88,%f89;
    // inline asm
    add.f32   %f96, %f91, 0f00000000;
    ex2.approx.f32  %f97, %f96;
    mul.f32   %f98, %f88, %f97;
    setp.lt.f32 %p15, %f107, 0fC2D20000;
    selp.f32  %f99, 0f00000000, %f98, %p15;
    setp.gt.f32 %p16, %f107, 0f42D20000;
    selp.f32  %f110, 0f7F800000, %f99, %p16;
    setp.eq.f32 %p17, %f110, 0f7F800000;
    @%p17 bra   BB0_28;
  // %bb.27:
    fma.rn.f32  %f110, %f110, %f108, %f110;
  BB0_28:                                 // %__internal_accurate_powf.exit.i
    setp.lt.f32 %p18, %f1, 0f00000000;
    setp.eq.f32 %p19, %f3, 0f3F800000;
    and.pred    %p20, %p18, %p19;
    @!%p20 bra  BB0_30;
    bra.uni   BB0_29;
  BB0_29:
    mov.b32    %r9, %f110;
    xor.b32   %r10, %r9, -2147483648;
    mov.b32    %f110, %r10;
  BB0_30:                                 // %__nv_powf.exit
    st.global.f32   [%rl1], %f110;
    ret;
  }
 |