1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
//===- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <memory>
#include <string>
#include <vector>
class PrototypeAST;
class ExprAST;
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
std::unique_ptr<PrototypeAST> Proto;
std::unique_ptr<ExprAST> Body;
public:
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
std::unique_ptr<ExprAST> Body)
: Proto(std::move(Proto)), Body(std::move(Body)) {}
const PrototypeAST& getProto() const;
const std::string& getName() const;
llvm::Function *codegen();
};
/// This will compile FnAST to IR, rename the function to add the given
/// suffix (needed to prevent a name-clash with the function's stub),
/// and then take ownership of the module that the function was compiled
/// into.
std::unique_ptr<llvm::Module>
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
namespace llvm {
namespace orc {
class KaleidoscopeJIT {
private:
std::unique_ptr<TargetMachine> TM;
const DataLayout DL;
RTDyldObjectLinkingLayer ObjectLayer;
IRCompileLayer<decltype(ObjectLayer), SimpleCompiler> CompileLayer;
using OptimizeFunction =
std::function<std::shared_ptr<Module>(std::shared_ptr<Module>)>;
IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
std::unique_ptr<JITCompileCallbackManager> CompileCallbackMgr;
std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
public:
using ModuleHandle = decltype(OptimizeLayer)::ModuleHandleT;
KaleidoscopeJIT()
: TM(EngineBuilder().selectTarget()),
DL(TM->createDataLayout()),
ObjectLayer([]() { return std::make_shared<SectionMemoryManager>(); }),
CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
OptimizeLayer(CompileLayer,
[this](std::shared_ptr<Module> M) {
return optimizeModule(std::move(M));
}),
CompileCallbackMgr(
orc::createLocalCompileCallbackManager(TM->getTargetTriple(), 0)) {
auto IndirectStubsMgrBuilder =
orc::createLocalIndirectStubsManagerBuilder(TM->getTargetTriple());
IndirectStubsMgr = IndirectStubsMgrBuilder();
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
}
TargetMachine &getTargetMachine() { return *TM; }
ModuleHandle addModule(std::unique_ptr<Module> M) {
// Build our symbol resolver:
// Lambda 1: Look back into the JIT itself to find symbols that are part of
// the same "logical dylib".
// Lambda 2: Search for external symbols in the host process.
auto Resolver = createLambdaResolver(
[&](const std::string &Name) {
if (auto Sym = IndirectStubsMgr->findStub(Name, false))
return Sym;
if (auto Sym = OptimizeLayer.findSymbol(Name, false))
return Sym;
return JITSymbol(nullptr);
},
[](const std::string &Name) {
if (auto SymAddr =
RTDyldMemoryManager::getSymbolAddressInProcess(Name))
return JITSymbol(SymAddr, JITSymbolFlags::Exported);
return JITSymbol(nullptr);
});
// Add the set to the JIT with the resolver we created above and a newly
// created SectionMemoryManager.
return cantFail(OptimizeLayer.addModule(std::move(M),
std::move(Resolver)));
}
Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
// Create a CompileCallback - this is the re-entry point into the compiler
// for functions that haven't been compiled yet.
auto CCInfo = cantFail(CompileCallbackMgr->getCompileCallback());
// Create an indirect stub. This serves as the functions "canonical
// definition" - an unchanging (constant address) entry point to the
// function implementation.
// Initially we point the stub's function-pointer at the compile callback
// that we just created. In the compile action for the callback (see below)
// we will update the stub's function pointer to point at the function
// implementation that we just implemented.
if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),
CCInfo.getAddress(),
JITSymbolFlags::Exported))
return Err;
// Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
// capture-by-move, which is be required for unique_ptr.
auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
// Set the action to compile our AST. This lambda will be run if/when
// execution hits the compile callback (via the stub).
//
// The steps to compile are:
// (1) IRGen the function.
// (2) Add the IR module to the JIT to make it executable like any other
// module.
// (3) Use findSymbol to get the address of the compiled function.
// (4) Update the stub pointer to point at the implementation so that
/// subsequent calls go directly to it and bypass the compiler.
// (5) Return the address of the implementation: this lambda will actually
// be run inside an attempted call to the function, and we need to
// continue on to the implementation to complete the attempted call.
// The JIT runtime (the resolver block) will use the return address of
// this function as the address to continue at once it has reset the
// CPU state to what it was immediately before the call.
CCInfo.setCompileAction(
[this, SharedFnAST]() {
auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
addModule(std::move(M));
auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
assert(Sym && "Couldn't find compiled function?");
JITTargetAddress SymAddr = cantFail(Sym.getAddress());
if (auto Err =
IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
SymAddr)) {
logAllUnhandledErrors(std::move(Err), errs(),
"Error updating function pointer: ");
exit(1);
}
return SymAddr;
});
return Error::success();
}
JITSymbol findSymbol(const std::string Name) {
return OptimizeLayer.findSymbol(mangle(Name), true);
}
void removeModule(ModuleHandle H) {
cantFail(OptimizeLayer.removeModule(H));
}
private:
std::string mangle(const std::string &Name) {
std::string MangledName;
raw_string_ostream MangledNameStream(MangledName);
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
return MangledNameStream.str();
}
std::shared_ptr<Module> optimizeModule(std::shared_ptr<Module> M) {
// Create a function pass manager.
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
// Add some optimizations.
FPM->add(createInstructionCombiningPass());
FPM->add(createReassociatePass());
FPM->add(createGVNPass());
FPM->add(createCFGSimplificationPass());
FPM->doInitialization();
// Run the optimizations over all functions in the module being added to
// the JIT.
for (auto &F : *M)
FPM->run(F);
return M;
}
};
} // end namespace orc
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
|