| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 
 | //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass forwards branches to unconditional branches to make them branch
// directly to the target block.  This pass often results in dead MBB's, which
// it then removes.
//
// Note that this pass must be run after register allocation, it cannot handle
// SSA form. It also must handle virtual registers for targets that emit virtual
// ISA (e.g. NVPTX).
//
//===----------------------------------------------------------------------===//
#include "BranchFolding.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstddef>
#include <iterator>
#include <numeric>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "branch-folder"
STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumBranchOpts, "Number of branches optimized");
STATISTIC(NumTailMerge , "Number of block tails merged");
STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
STATISTIC(NumTailCalls,  "Number of tail calls optimized");
static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
                              cl::init(cl::BOU_UNSET), cl::Hidden);
// Throttle for huge numbers of predecessors (compile speed problems)
static cl::opt<unsigned>
TailMergeThreshold("tail-merge-threshold",
          cl::desc("Max number of predecessors to consider tail merging"),
          cl::init(150), cl::Hidden);
// Heuristic for tail merging (and, inversely, tail duplication).
// TODO: This should be replaced with a target query.
static cl::opt<unsigned>
TailMergeSize("tail-merge-size",
              cl::desc("Min number of instructions to consider tail merging"),
              cl::init(3), cl::Hidden);
namespace {
  /// BranchFolderPass - Wrap branch folder in a machine function pass.
  class BranchFolderPass : public MachineFunctionPass {
  public:
    static char ID;
    explicit BranchFolderPass(): MachineFunctionPass(ID) {}
    bool runOnMachineFunction(MachineFunction &MF) override;
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBlockFrequencyInfo>();
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<TargetPassConfig>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
  };
} // end anonymous namespace
char BranchFolderPass::ID = 0;
char &llvm::BranchFolderPassID = BranchFolderPass::ID;
INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
                "Control Flow Optimizer", false, false)
bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
  // TailMerge can create jump into if branches that make CFG irreducible for
  // HW that requires structurized CFG.
  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
                         PassConfig->getEnableTailMerge();
  BranchFolder::MBFIWrapper MBBFreqInfo(
      getAnalysis<MachineBlockFrequencyInfo>());
  BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
                      getAnalysis<MachineBranchProbabilityInfo>());
  return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
                                 MF.getSubtarget().getRegisterInfo(),
                                 getAnalysisIfAvailable<MachineModuleInfo>());
}
BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
                           MBFIWrapper &FreqInfo,
                           const MachineBranchProbabilityInfo &ProbInfo,
                           unsigned MinTailLength)
    : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
      MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
  if (MinCommonTailLength == 0)
    MinCommonTailLength = TailMergeSize;
  switch (FlagEnableTailMerge) {
  case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
  case cl::BOU_TRUE: EnableTailMerge = true; break;
  case cl::BOU_FALSE: EnableTailMerge = false; break;
  }
}
void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
  assert(MBB->pred_empty() && "MBB must be dead!");
  DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
  MachineFunction *MF = MBB->getParent();
  // drop all successors.
  while (!MBB->succ_empty())
    MBB->removeSuccessor(MBB->succ_end()-1);
  // Avoid matching if this pointer gets reused.
  TriedMerging.erase(MBB);
  // Remove the block.
  MF->erase(MBB);
  FuncletMembership.erase(MBB);
  if (MLI)
    MLI->removeBlock(MBB);
}
bool BranchFolder::OptimizeFunction(MachineFunction &MF,
                                    const TargetInstrInfo *tii,
                                    const TargetRegisterInfo *tri,
                                    MachineModuleInfo *mmi,
                                    MachineLoopInfo *mli, bool AfterPlacement) {
  if (!tii) return false;
  TriedMerging.clear();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  AfterBlockPlacement = AfterPlacement;
  TII = tii;
  TRI = tri;
  MMI = mmi;
  MLI = mli;
  this->MRI = &MRI;
  UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
  if (!UpdateLiveIns)
    MRI.invalidateLiveness();
  // Fix CFG.  The later algorithms expect it to be right.
  bool MadeChange = false;
  for (MachineBasicBlock &MBB : MF) {
    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 4> Cond;
    if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
      MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
  }
  // Recalculate funclet membership.
  FuncletMembership = getFuncletMembership(MF);
  bool MadeChangeThisIteration = true;
  while (MadeChangeThisIteration) {
    MadeChangeThisIteration    = TailMergeBlocks(MF);
    // No need to clean up if tail merging does not change anything after the
    // block placement.
    if (!AfterBlockPlacement || MadeChangeThisIteration)
      MadeChangeThisIteration |= OptimizeBranches(MF);
    if (EnableHoistCommonCode)
      MadeChangeThisIteration |= HoistCommonCode(MF);
    MadeChange |= MadeChangeThisIteration;
  }
  // See if any jump tables have become dead as the code generator
  // did its thing.
  MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
  if (!JTI)
    return MadeChange;
  // Walk the function to find jump tables that are live.
  BitVector JTIsLive(JTI->getJumpTables().size());
  for (const MachineBasicBlock &BB : MF) {
    for (const MachineInstr &I : BB)
      for (const MachineOperand &Op : I.operands()) {
        if (!Op.isJTI()) continue;
        // Remember that this JT is live.
        JTIsLive.set(Op.getIndex());
      }
  }
  // Finally, remove dead jump tables.  This happens when the
  // indirect jump was unreachable (and thus deleted).
  for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
    if (!JTIsLive.test(i)) {
      JTI->RemoveJumpTable(i);
      MadeChange = true;
    }
  return MadeChange;
}
//===----------------------------------------------------------------------===//
//  Tail Merging of Blocks
//===----------------------------------------------------------------------===//
/// HashMachineInstr - Compute a hash value for MI and its operands.
static unsigned HashMachineInstr(const MachineInstr &MI) {
  unsigned Hash = MI.getOpcode();
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &Op = MI.getOperand(i);
    // Merge in bits from the operand if easy. We can't use MachineOperand's
    // hash_code here because it's not deterministic and we sort by hash value
    // later.
    unsigned OperandHash = 0;
    switch (Op.getType()) {
    case MachineOperand::MO_Register:
      OperandHash = Op.getReg();
      break;
    case MachineOperand::MO_Immediate:
      OperandHash = Op.getImm();
      break;
    case MachineOperand::MO_MachineBasicBlock:
      OperandHash = Op.getMBB()->getNumber();
      break;
    case MachineOperand::MO_FrameIndex:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      OperandHash = Op.getIndex();
      break;
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_ExternalSymbol:
      // Global address / external symbol are too hard, don't bother, but do
      // pull in the offset.
      OperandHash = Op.getOffset();
      break;
    default:
      break;
    }
    Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
  }
  return Hash;
}
/// HashEndOfMBB - Hash the last instruction in the MBB.
static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
  MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;
  return HashMachineInstr(*I);
}
/// ComputeCommonTailLength - Given two machine basic blocks, compute the number
/// of instructions they actually have in common together at their end.  Return
/// iterators for the first shared instruction in each block.
static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
                                        MachineBasicBlock *MBB2,
                                        MachineBasicBlock::iterator &I1,
                                        MachineBasicBlock::iterator &I2) {
  I1 = MBB1->end();
  I2 = MBB2->end();
  unsigned TailLen = 0;
  while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
    --I1; --I2;
    // Skip debugging pseudos; necessary to avoid changing the code.
    while (I1->isDebugValue()) {
      if (I1==MBB1->begin()) {
        while (I2->isDebugValue()) {
          if (I2==MBB2->begin())
            // I1==DBG at begin; I2==DBG at begin
            return TailLen;
          --I2;
        }
        ++I2;
        // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
        return TailLen;
      }
      --I1;
    }
    // I1==first (untested) non-DBG preceding known match
    while (I2->isDebugValue()) {
      if (I2==MBB2->begin()) {
        ++I1;
        // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
        return TailLen;
      }
      --I2;
    }
    // I1, I2==first (untested) non-DBGs preceding known match
    if (!I1->isIdenticalTo(*I2) ||
        // FIXME: This check is dubious. It's used to get around a problem where
        // people incorrectly expect inline asm directives to remain in the same
        // relative order. This is untenable because normal compiler
        // optimizations (like this one) may reorder and/or merge these
        // directives.
        I1->isInlineAsm()) {
      ++I1; ++I2;
      break;
    }
    ++TailLen;
  }
  // Back past possible debugging pseudos at beginning of block.  This matters
  // when one block differs from the other only by whether debugging pseudos
  // are present at the beginning. (This way, the various checks later for
  // I1==MBB1->begin() work as expected.)
  if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
    --I2;
    while (I2->isDebugValue()) {
      if (I2 == MBB2->begin())
        return TailLen;
      --I2;
    }
    ++I2;
  }
  if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
    --I1;
    while (I1->isDebugValue()) {
      if (I1 == MBB1->begin())
        return TailLen;
      --I1;
    }
    ++I1;
  }
  return TailLen;
}
void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
                                           MachineBasicBlock &NewDest) {
  if (UpdateLiveIns) {
    // OldInst should always point to an instruction.
    MachineBasicBlock &OldMBB = *OldInst->getParent();
    LiveRegs.clear();
    LiveRegs.addLiveOuts(OldMBB);
    // Move backward to the place where will insert the jump.
    MachineBasicBlock::iterator I = OldMBB.end();
    do {
      --I;
      LiveRegs.stepBackward(*I);
    } while (I != OldInst);
    // Merging the tails may have switched some undef operand to non-undef ones.
    // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
    // register.
    for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
      // We computed the liveins with computeLiveIn earlier and should only see
      // full registers:
      assert(P.LaneMask == LaneBitmask::getAll() &&
             "Can only handle full register.");
      MCPhysReg Reg = P.PhysReg;
      if (!LiveRegs.available(*MRI, Reg))
        continue;
      DebugLoc DL;
      BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
    }
  }
  TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
  ++NumTailMerge;
}
MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
                                            MachineBasicBlock::iterator BBI1,
                                            const BasicBlock *BB) {
  if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
    return nullptr;
  MachineFunction &MF = *CurMBB.getParent();
  // Create the fall-through block.
  MachineFunction::iterator MBBI = CurMBB.getIterator();
  MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
  CurMBB.getParent()->insert(++MBBI, NewMBB);
  // Move all the successors of this block to the specified block.
  NewMBB->transferSuccessors(&CurMBB);
  // Add an edge from CurMBB to NewMBB for the fall-through.
  CurMBB.addSuccessor(NewMBB);
  // Splice the code over.
  NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
  // NewMBB belongs to the same loop as CurMBB.
  if (MLI)
    if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
      ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
  // NewMBB inherits CurMBB's block frequency.
  MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
  if (UpdateLiveIns)
    computeAndAddLiveIns(LiveRegs, *NewMBB);
  // Add the new block to the funclet.
  const auto &FuncletI = FuncletMembership.find(&CurMBB);
  if (FuncletI != FuncletMembership.end()) {
    auto n = FuncletI->second;
    FuncletMembership[NewMBB] = n;
  }
  return NewMBB;
}
/// EstimateRuntime - Make a rough estimate for how long it will take to run
/// the specified code.
static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
                                MachineBasicBlock::iterator E) {
  unsigned Time = 0;
  for (; I != E; ++I) {
    if (I->isDebugValue())
      continue;
    if (I->isCall())
      Time += 10;
    else if (I->mayLoad() || I->mayStore())
      Time += 2;
    else
      ++Time;
  }
  return Time;
}
// CurMBB needs to add an unconditional branch to SuccMBB (we removed these
// branches temporarily for tail merging).  In the case where CurMBB ends
// with a conditional branch to the next block, optimize by reversing the
// test and conditionally branching to SuccMBB instead.
static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
                    const TargetInstrInfo *TII) {
  MachineFunction *MF = CurMBB->getParent();
  MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  DebugLoc dl = CurMBB->findBranchDebugLoc();
  if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
    MachineBasicBlock *NextBB = &*I;
    if (TBB == NextBB && !Cond.empty() && !FBB) {
      if (!TII->reverseBranchCondition(Cond)) {
        TII->removeBranch(*CurMBB);
        TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
        return;
      }
    }
  }
  TII->insertBranch(*CurMBB, SuccBB, nullptr,
                    SmallVector<MachineOperand, 0>(), dl);
}
bool
BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
  if (getHash() < o.getHash())
    return true;
  if (getHash() > o.getHash())
    return false;
  if (getBlock()->getNumber() < o.getBlock()->getNumber())
    return true;
  if (getBlock()->getNumber() > o.getBlock()->getNumber())
    return false;
  // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
  // an object with itself.
#ifndef _GLIBCXX_DEBUG
  llvm_unreachable("Predecessor appears twice");
#else
  return false;
#endif
}
BlockFrequency
BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
  auto I = MergedBBFreq.find(MBB);
  if (I != MergedBBFreq.end())
    return I->second;
  return MBFI.getBlockFreq(MBB);
}
void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
                                             BlockFrequency F) {
  MergedBBFreq[MBB] = F;
}
raw_ostream &
BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
                                          const MachineBasicBlock *MBB) const {
  return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
}
raw_ostream &
BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
                                          const BlockFrequency Freq) const {
  return MBFI.printBlockFreq(OS, Freq);
}
void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
  MBFI.view(Name, isSimple);
}
uint64_t
BranchFolder::MBFIWrapper::getEntryFreq() const {
  return MBFI.getEntryFreq();
}
/// CountTerminators - Count the number of terminators in the given
/// block and set I to the position of the first non-terminator, if there
/// is one, or MBB->end() otherwise.
static unsigned CountTerminators(MachineBasicBlock *MBB,
                                 MachineBasicBlock::iterator &I) {
  I = MBB->end();
  unsigned NumTerms = 0;
  while (true) {
    if (I == MBB->begin()) {
      I = MBB->end();
      break;
    }
    --I;
    if (!I->isTerminator()) break;
    ++NumTerms;
  }
  return NumTerms;
}
/// A no successor, non-return block probably ends in unreachable and is cold.
/// Also consider a block that ends in an indirect branch to be a return block,
/// since many targets use plain indirect branches to return.
static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
  if (!MBB->succ_empty())
    return false;
  if (MBB->empty())
    return true;
  return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
}
/// ProfitableToMerge - Check if two machine basic blocks have a common tail
/// and decide if it would be profitable to merge those tails.  Return the
/// length of the common tail and iterators to the first common instruction
/// in each block.
/// MBB1, MBB2      The blocks to check
/// MinCommonTailLength  Minimum size of tail block to be merged.
/// CommonTailLen   Out parameter to record the size of the shared tail between
///                 MBB1 and MBB2
/// I1, I2          Iterator references that will be changed to point to the first
///                 instruction in the common tail shared by MBB1,MBB2
/// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
///                 relative to SuccBB
/// PredBB          The layout predecessor of SuccBB, if any.
/// FuncletMembership  map from block to funclet #.
/// AfterPlacement  True if we are merging blocks after layout. Stricter
///                 thresholds apply to prevent undoing tail-duplication.
static bool
ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
                  unsigned MinCommonTailLength, unsigned &CommonTailLen,
                  MachineBasicBlock::iterator &I1,
                  MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
                  MachineBasicBlock *PredBB,
                  DenseMap<const MachineBasicBlock *, int> &FuncletMembership,
                  bool AfterPlacement) {
  // It is never profitable to tail-merge blocks from two different funclets.
  if (!FuncletMembership.empty()) {
    auto Funclet1 = FuncletMembership.find(MBB1);
    assert(Funclet1 != FuncletMembership.end());
    auto Funclet2 = FuncletMembership.find(MBB2);
    assert(Funclet2 != FuncletMembership.end());
    if (Funclet1->second != Funclet2->second)
      return false;
  }
  CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
  if (CommonTailLen == 0)
    return false;
  DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
               << " and " << printMBBReference(*MBB2) << " is " << CommonTailLen
               << '\n');
  // It's almost always profitable to merge any number of non-terminator
  // instructions with the block that falls through into the common successor.
  // This is true only for a single successor. For multiple successors, we are
  // trading a conditional branch for an unconditional one.
  // TODO: Re-visit successor size for non-layout tail merging.
  if ((MBB1 == PredBB || MBB2 == PredBB) &&
      (!AfterPlacement || MBB1->succ_size() == 1)) {
    MachineBasicBlock::iterator I;
    unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
    if (CommonTailLen > NumTerms)
      return true;
  }
  // If these are identical non-return blocks with no successors, merge them.
  // Such blocks are typically cold calls to noreturn functions like abort, and
  // are unlikely to become a fallthrough target after machine block placement.
  // Tail merging these blocks is unlikely to create additional unconditional
  // branches, and will reduce the size of this cold code.
  if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
      blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
    return true;
  // If one of the blocks can be completely merged and happens to be in
  // a position where the other could fall through into it, merge any number
  // of instructions, because it can be done without a branch.
  // TODO: If the blocks are not adjacent, move one of them so that they are?
  if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
    return true;
  if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
    return true;
  // If both blocks are identical and end in a branch, merge them unless they
  // both have a fallthrough predecessor and successor.
  // We can only do this after block placement because it depends on whether
  // there are fallthroughs, and we don't know until after layout.
  if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
    auto BothFallThrough = [](MachineBasicBlock *MBB) {
      if (MBB->succ_size() != 0 && !MBB->canFallThrough())
        return false;
      MachineFunction::iterator I(MBB);
      MachineFunction *MF = MBB->getParent();
      return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
    };
    if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
      return true;
  }
  // If both blocks have an unconditional branch temporarily stripped out,
  // count that as an additional common instruction for the following
  // heuristics. This heuristic is only accurate for single-succ blocks, so to
  // make sure that during layout merging and duplicating don't crash, we check
  // for that when merging during layout.
  unsigned EffectiveTailLen = CommonTailLen;
  if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
      (MBB1->succ_size() == 1 || !AfterPlacement) &&
      !MBB1->back().isBarrier() &&
      !MBB2->back().isBarrier())
    ++EffectiveTailLen;
  // Check if the common tail is long enough to be worthwhile.
  if (EffectiveTailLen >= MinCommonTailLength)
    return true;
  // If we are optimizing for code size, 2 instructions in common is enough if
  // we don't have to split a block.  At worst we will be introducing 1 new
  // branch instruction, which is likely to be smaller than the 2
  // instructions that would be deleted in the merge.
  MachineFunction *MF = MBB1->getParent();
  return EffectiveTailLen >= 2 && MF->getFunction().optForSize() &&
         (I1 == MBB1->begin() || I2 == MBB2->begin());
}
unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
                                        unsigned MinCommonTailLength,
                                        MachineBasicBlock *SuccBB,
                                        MachineBasicBlock *PredBB) {
  unsigned maxCommonTailLength = 0U;
  SameTails.clear();
  MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
  MPIterator HighestMPIter = std::prev(MergePotentials.end());
  for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
                  B = MergePotentials.begin();
       CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
    for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
      unsigned CommonTailLen;
      if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
                            MinCommonTailLength,
                            CommonTailLen, TrialBBI1, TrialBBI2,
                            SuccBB, PredBB,
                            FuncletMembership,
                            AfterBlockPlacement)) {
        if (CommonTailLen > maxCommonTailLength) {
          SameTails.clear();
          maxCommonTailLength = CommonTailLen;
          HighestMPIter = CurMPIter;
          SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
        }
        if (HighestMPIter == CurMPIter &&
            CommonTailLen == maxCommonTailLength)
          SameTails.push_back(SameTailElt(I, TrialBBI2));
      }
      if (I == B)
        break;
    }
  }
  return maxCommonTailLength;
}
void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
                                        MachineBasicBlock *SuccBB,
                                        MachineBasicBlock *PredBB) {
  MPIterator CurMPIter, B;
  for (CurMPIter = std::prev(MergePotentials.end()),
      B = MergePotentials.begin();
       CurMPIter->getHash() == CurHash; --CurMPIter) {
    // Put the unconditional branch back, if we need one.
    MachineBasicBlock *CurMBB = CurMPIter->getBlock();
    if (SuccBB && CurMBB != PredBB)
      FixTail(CurMBB, SuccBB, TII);
    if (CurMPIter == B)
      break;
  }
  if (CurMPIter->getHash() != CurHash)
    CurMPIter++;
  MergePotentials.erase(CurMPIter, MergePotentials.end());
}
bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
                                             MachineBasicBlock *SuccBB,
                                             unsigned maxCommonTailLength,
                                             unsigned &commonTailIndex) {
  commonTailIndex = 0;
  unsigned TimeEstimate = ~0U;
  for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
    // Use PredBB if possible; that doesn't require a new branch.
    if (SameTails[i].getBlock() == PredBB) {
      commonTailIndex = i;
      break;
    }
    // Otherwise, make a (fairly bogus) choice based on estimate of
    // how long it will take the various blocks to execute.
    unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
                                 SameTails[i].getTailStartPos());
    if (t <= TimeEstimate) {
      TimeEstimate = t;
      commonTailIndex = i;
    }
  }
  MachineBasicBlock::iterator BBI =
    SameTails[commonTailIndex].getTailStartPos();
  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
  DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
               << maxCommonTailLength);
  // If the split block unconditionally falls-thru to SuccBB, it will be
  // merged. In control flow terms it should then take SuccBB's name. e.g. If
  // SuccBB is an inner loop, the common tail is still part of the inner loop.
  const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
    SuccBB->getBasicBlock() : MBB->getBasicBlock();
  MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
  if (!newMBB) {
    DEBUG(dbgs() << "... failed!");
    return false;
  }
  SameTails[commonTailIndex].setBlock(newMBB);
  SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
  // If we split PredBB, newMBB is the new predecessor.
  if (PredBB == MBB)
    PredBB = newMBB;
  return true;
}
static void
mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
                MachineBasicBlock &MBBCommon) {
  MachineBasicBlock *MBB = MBBIStartPos->getParent();
  // Note CommonTailLen does not necessarily matches the size of
  // the common BB nor all its instructions because of debug
  // instructions differences.
  unsigned CommonTailLen = 0;
  for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
    ++CommonTailLen;
  MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
  MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
  MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
  MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
  while (CommonTailLen--) {
    assert(MBBI != MBBIE && "Reached BB end within common tail length!");
    (void)MBBIE;
    if (MBBI->isDebugValue()) {
      ++MBBI;
      continue;
    }
    while ((MBBICommon != MBBIECommon) && MBBICommon->isDebugValue())
      ++MBBICommon;
    assert(MBBICommon != MBBIECommon &&
           "Reached BB end within common tail length!");
    assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
    // Merge MMOs from memory operations in the common block.
    if (MBBICommon->mayLoad() || MBBICommon->mayStore())
      MBBICommon->setMemRefs(MBBICommon->mergeMemRefsWith(*MBBI));
    // Drop undef flags if they aren't present in all merged instructions.
    for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
      MachineOperand &MO = MBBICommon->getOperand(I);
      if (MO.isReg() && MO.isUndef()) {
        const MachineOperand &OtherMO = MBBI->getOperand(I);
        if (!OtherMO.isUndef())
          MO.setIsUndef(false);
      }
    }
    ++MBBI;
    ++MBBICommon;
  }
}
void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
  MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
  std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
  for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
    if (i != commonTailIndex) {
      NextCommonInsts[i] = SameTails[i].getTailStartPos();
      mergeOperations(SameTails[i].getTailStartPos(), *MBB);
    } else {
      assert(SameTails[i].getTailStartPos() == MBB->begin() &&
          "MBB is not a common tail only block");
    }
  }
  for (auto &MI : *MBB) {
    if (MI.isDebugValue())
      continue;
    DebugLoc DL = MI.getDebugLoc();
    for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
      if (i == commonTailIndex)
        continue;
      auto &Pos = NextCommonInsts[i];
      assert(Pos != SameTails[i].getBlock()->end() &&
          "Reached BB end within common tail");
      while (Pos->isDebugValue()) {
        ++Pos;
        assert(Pos != SameTails[i].getBlock()->end() &&
            "Reached BB end within common tail");
      }
      assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
      DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
      NextCommonInsts[i] = ++Pos;
    }
    MI.setDebugLoc(DL);
  }
  if (UpdateLiveIns) {
    LivePhysRegs NewLiveIns(*TRI);
    computeLiveIns(NewLiveIns, *MBB);
    // The flag merging may lead to some register uses no longer using the
    // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
    for (MachineBasicBlock *Pred : MBB->predecessors()) {
      LiveRegs.init(*TRI);
      LiveRegs.addLiveOuts(*Pred);
      MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
      for (unsigned Reg : NewLiveIns) {
        if (!LiveRegs.available(*MRI, Reg))
          continue;
        DebugLoc DL;
        BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
                Reg);
      }
    }
    MBB->clearLiveIns();
    addLiveIns(*MBB, NewLiveIns);
  }
}
// See if any of the blocks in MergePotentials (which all have SuccBB as a
// successor, or all have no successor if it is null) can be tail-merged.
// If there is a successor, any blocks in MergePotentials that are not
// tail-merged and are not immediately before Succ must have an unconditional
// branch to Succ added (but the predecessor/successor lists need no
// adjustment). The lone predecessor of Succ that falls through into Succ,
// if any, is given in PredBB.
// MinCommonTailLength - Except for the special cases below, tail-merge if
// there are at least this many instructions in common.
bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
                                      MachineBasicBlock *PredBB,
                                      unsigned MinCommonTailLength) {
  bool MadeChange = false;
  DEBUG(dbgs() << "\nTryTailMergeBlocks: ";
        for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
        << printMBBReference(*MergePotentials[i].getBlock())
        << (i == e - 1 ? "" : ", ");
        dbgs() << "\n"; if (SuccBB) {
          dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
          if (PredBB)
            dbgs() << "  which has fall-through from "
                   << printMBBReference(*PredBB) << "\n";
        } dbgs() << "Looking for common tails of at least "
                 << MinCommonTailLength << " instruction"
                 << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
  // Sort by hash value so that blocks with identical end sequences sort
  // together.
  array_pod_sort(MergePotentials.begin(), MergePotentials.end());
  // Walk through equivalence sets looking for actual exact matches.
  while (MergePotentials.size() > 1) {
    unsigned CurHash = MergePotentials.back().getHash();
    // Build SameTails, identifying the set of blocks with this hash code
    // and with the maximum number of instructions in common.
    unsigned maxCommonTailLength = ComputeSameTails(CurHash,
                                                    MinCommonTailLength,
                                                    SuccBB, PredBB);
    // If we didn't find any pair that has at least MinCommonTailLength
    // instructions in common, remove all blocks with this hash code and retry.
    if (SameTails.empty()) {
      RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
      continue;
    }
    // If one of the blocks is the entire common tail (and not the entry
    // block, which we can't jump to), we can treat all blocks with this same
    // tail at once.  Use PredBB if that is one of the possibilities, as that
    // will not introduce any extra branches.
    MachineBasicBlock *EntryBB =
        &MergePotentials.front().getBlock()->getParent()->front();
    unsigned commonTailIndex = SameTails.size();
    // If there are two blocks, check to see if one can be made to fall through
    // into the other.
    if (SameTails.size() == 2 &&
        SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
        SameTails[1].tailIsWholeBlock())
      commonTailIndex = 1;
    else if (SameTails.size() == 2 &&
             SameTails[1].getBlock()->isLayoutSuccessor(
                                                     SameTails[0].getBlock()) &&
             SameTails[0].tailIsWholeBlock())
      commonTailIndex = 0;
    else {
      // Otherwise just pick one, favoring the fall-through predecessor if
      // there is one.
      for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
        MachineBasicBlock *MBB = SameTails[i].getBlock();
        if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
          continue;
        if (MBB == PredBB) {
          commonTailIndex = i;
          break;
        }
        if (SameTails[i].tailIsWholeBlock())
          commonTailIndex = i;
      }
    }
    if (commonTailIndex == SameTails.size() ||
        (SameTails[commonTailIndex].getBlock() == PredBB &&
         !SameTails[commonTailIndex].tailIsWholeBlock())) {
      // None of the blocks consist entirely of the common tail.
      // Split a block so that one does.
      if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
                                     maxCommonTailLength, commonTailIndex)) {
        RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
        continue;
      }
    }
    MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
    // Recompute common tail MBB's edge weights and block frequency.
    setCommonTailEdgeWeights(*MBB);
    // Merge debug locations, MMOs and undef flags across identical instructions
    // for common tail.
    mergeCommonTails(commonTailIndex);
    // MBB is common tail.  Adjust all other BB's to jump to this one.
    // Traversal must be forwards so erases work.
    DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
                 << " for ");
    for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
      if (commonTailIndex == i)
        continue;
      DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
                   << (i == e - 1 ? "" : ", "));
      // Hack the end off BB i, making it jump to BB commonTailIndex instead.
      replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
      // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
      MergePotentials.erase(SameTails[i].getMPIter());
    }
    DEBUG(dbgs() << "\n");
    // We leave commonTailIndex in the worklist in case there are other blocks
    // that match it with a smaller number of instructions.
    MadeChange = true;
  }
  return MadeChange;
}
bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
  bool MadeChange = false;
  if (!EnableTailMerge) return MadeChange;
  // First find blocks with no successors.
  // Block placement does not create new tail merging opportunities for these
  // blocks.
  if (!AfterBlockPlacement) {
    MergePotentials.clear();
    for (MachineBasicBlock &MBB : MF) {
      if (MergePotentials.size() == TailMergeThreshold)
        break;
      if (!TriedMerging.count(&MBB) && MBB.succ_empty())
        MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
    }
    // If this is a large problem, avoid visiting the same basic blocks
    // multiple times.
    if (MergePotentials.size() == TailMergeThreshold)
      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
        TriedMerging.insert(MergePotentials[i].getBlock());
    // See if we can do any tail merging on those.
    if (MergePotentials.size() >= 2)
      MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
  }
  // Look at blocks (IBB) with multiple predecessors (PBB).
  // We change each predecessor to a canonical form, by
  // (1) temporarily removing any unconditional branch from the predecessor
  // to IBB, and
  // (2) alter conditional branches so they branch to the other block
  // not IBB; this may require adding back an unconditional branch to IBB
  // later, where there wasn't one coming in.  E.g.
  //   Bcc IBB
  //   fallthrough to QBB
  // here becomes
  //   Bncc QBB
  // with a conceptual B to IBB after that, which never actually exists.
  // With those changes, we see whether the predecessors' tails match,
  // and merge them if so.  We change things out of canonical form and
  // back to the way they were later in the process.  (OptimizeBranches
  // would undo some of this, but we can't use it, because we'd get into
  // a compile-time infinite loop repeatedly doing and undoing the same
  // transformations.)
  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ++I) {
    if (I->pred_size() < 2) continue;
    SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
    MachineBasicBlock *IBB = &*I;
    MachineBasicBlock *PredBB = &*std::prev(I);
    MergePotentials.clear();
    MachineLoop *ML;
    // Bail if merging after placement and IBB is the loop header because
    // -- If merging predecessors that belong to the same loop as IBB, the
    // common tail of merged predecessors may become the loop top if block
    // placement is called again and the predecessors may branch to this common
    // tail and require more branches. This can be relaxed if
    // MachineBlockPlacement::findBestLoopTop is more flexible.
    // --If merging predecessors that do not belong to the same loop as IBB, the
    // loop info of IBB's loop and the other loops may be affected. Calling the
    // block placement again may make big change to the layout and eliminate the
    // reason to do tail merging here.
    if (AfterBlockPlacement && MLI) {
      ML = MLI->getLoopFor(IBB);
      if (ML && IBB == ML->getHeader())
        continue;
    }
    for (MachineBasicBlock *PBB : I->predecessors()) {
      if (MergePotentials.size() == TailMergeThreshold)
        break;
      if (TriedMerging.count(PBB))
        continue;
      // Skip blocks that loop to themselves, can't tail merge these.
      if (PBB == IBB)
        continue;
      // Visit each predecessor only once.
      if (!UniquePreds.insert(PBB).second)
        continue;
      // Skip blocks which may jump to a landing pad. Can't tail merge these.
      if (PBB->hasEHPadSuccessor())
        continue;
      // After block placement, only consider predecessors that belong to the
      // same loop as IBB.  The reason is the same as above when skipping loop
      // header.
      if (AfterBlockPlacement && MLI)
        if (ML != MLI->getLoopFor(PBB))
          continue;
      MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
      SmallVector<MachineOperand, 4> Cond;
      if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
        // Failing case: IBB is the target of a cbr, and we cannot reverse the
        // branch.
        SmallVector<MachineOperand, 4> NewCond(Cond);
        if (!Cond.empty() && TBB == IBB) {
          if (TII->reverseBranchCondition(NewCond))
            continue;
          // This is the QBB case described above
          if (!FBB) {
            auto Next = ++PBB->getIterator();
            if (Next != MF.end())
              FBB = &*Next;
          }
        }
        // Failing case: the only way IBB can be reached from PBB is via
        // exception handling.  Happens for landing pads.  Would be nice to have
        // a bit in the edge so we didn't have to do all this.
        if (IBB->isEHPad()) {
          MachineFunction::iterator IP = ++PBB->getIterator();
          MachineBasicBlock *PredNextBB = nullptr;
          if (IP != MF.end())
            PredNextBB = &*IP;
          if (!TBB) {
            if (IBB != PredNextBB)      // fallthrough
              continue;
          } else if (FBB) {
            if (TBB != IBB && FBB != IBB)   // cbr then ubr
              continue;
          } else if (Cond.empty()) {
            if (TBB != IBB)               // ubr
              continue;
          } else {
            if (TBB != IBB && IBB != PredNextBB)  // cbr
              continue;
          }
        }
        // Remove the unconditional branch at the end, if any.
        if (TBB && (Cond.empty() || FBB)) {
          DebugLoc dl = PBB->findBranchDebugLoc();
          TII->removeBranch(*PBB);
          if (!Cond.empty())
            // reinsert conditional branch only, for now
            TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
                              NewCond, dl);
        }
        MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
      }
    }
    // If this is a large problem, avoid visiting the same basic blocks multiple
    // times.
    if (MergePotentials.size() == TailMergeThreshold)
      for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
        TriedMerging.insert(MergePotentials[i].getBlock());
    if (MergePotentials.size() >= 2)
      MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
    // Reinsert an unconditional branch if needed. The 1 below can occur as a
    // result of removing blocks in TryTailMergeBlocks.
    PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
    if (MergePotentials.size() == 1 &&
        MergePotentials.begin()->getBlock() != PredBB)
      FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
  }
  return MadeChange;
}
void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
  SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
  BlockFrequency AccumulatedMBBFreq;
  // Aggregate edge frequency of successor edge j:
  //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
  //  where bb is a basic block that is in SameTails.
  for (const auto &Src : SameTails) {
    const MachineBasicBlock *SrcMBB = Src.getBlock();
    BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
    AccumulatedMBBFreq += BlockFreq;
    // It is not necessary to recompute edge weights if TailBB has less than two
    // successors.
    if (TailMBB.succ_size() <= 1)
      continue;
    auto EdgeFreq = EdgeFreqLs.begin();
    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
         SuccI != SuccE; ++SuccI, ++EdgeFreq)
      *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
  }
  MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
  if (TailMBB.succ_size() <= 1)
    return;
  auto SumEdgeFreq =
      std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
          .getFrequency();
  auto EdgeFreq = EdgeFreqLs.begin();
  if (SumEdgeFreq > 0) {
    for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
         SuccI != SuccE; ++SuccI, ++EdgeFreq) {
      auto Prob = BranchProbability::getBranchProbability(
          EdgeFreq->getFrequency(), SumEdgeFreq);
      TailMBB.setSuccProbability(SuccI, Prob);
    }
  }
}
//===----------------------------------------------------------------------===//
//  Branch Optimization
//===----------------------------------------------------------------------===//
bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
  bool MadeChange = false;
  // Make sure blocks are numbered in order
  MF.RenumberBlocks();
  // Renumbering blocks alters funclet membership, recalculate it.
  FuncletMembership = getFuncletMembership(MF);
  for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
       I != E; ) {
    MachineBasicBlock *MBB = &*I++;
    MadeChange |= OptimizeBlock(MBB);
    // If it is dead, remove it.
    if (MBB->pred_empty()) {
      RemoveDeadBlock(MBB);
      MadeChange = true;
      ++NumDeadBlocks;
    }
  }
  return MadeChange;
}
// Blocks should be considered empty if they contain only debug info;
// else the debug info would affect codegen.
static bool IsEmptyBlock(MachineBasicBlock *MBB) {
  return MBB->getFirstNonDebugInstr() == MBB->end();
}
// Blocks with only debug info and branches should be considered the same
// as blocks with only branches.
static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
  MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
  assert(I != MBB->end() && "empty block!");
  return I->isBranch();
}
/// IsBetterFallthrough - Return true if it would be clearly better to
/// fall-through to MBB1 than to fall through into MBB2.  This has to return
/// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
/// result in infinite loops.
static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
                                MachineBasicBlock *MBB2) {
  // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
  // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
  // optimize branches that branch to either a return block or an assert block
  // into a fallthrough to the return.
  MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
  MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
  if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
    return false;
  // If there is a clear successor ordering we make sure that one block
  // will fall through to the next
  if (MBB1->isSuccessor(MBB2)) return true;
  if (MBB2->isSuccessor(MBB1)) return false;
  return MBB2I->isCall() && !MBB1I->isCall();
}
/// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
/// instructions on the block.
static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I != MBB.end() && I->isBranch())
    return I->getDebugLoc();
  return DebugLoc();
}
bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
  bool MadeChange = false;
  MachineFunction &MF = *MBB->getParent();
ReoptimizeBlock:
  MachineFunction::iterator FallThrough = MBB->getIterator();
  ++FallThrough;
  // Make sure MBB and FallThrough belong to the same funclet.
  bool SameFunclet = true;
  if (!FuncletMembership.empty() && FallThrough != MF.end()) {
    auto MBBFunclet = FuncletMembership.find(MBB);
    assert(MBBFunclet != FuncletMembership.end());
    auto FallThroughFunclet = FuncletMembership.find(&*FallThrough);
    assert(FallThroughFunclet != FuncletMembership.end());
    SameFunclet = MBBFunclet->second == FallThroughFunclet->second;
  }
  // If this block is empty, make everyone use its fall-through, not the block
  // explicitly.  Landing pads should not do this since the landing-pad table
  // points to this block.  Blocks with their addresses taken shouldn't be
  // optimized away.
  if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
      SameFunclet) {
    // Dead block?  Leave for cleanup later.
    if (MBB->pred_empty()) return MadeChange;
    if (FallThrough == MF.end()) {
      // TODO: Simplify preds to not branch here if possible!
    } else if (FallThrough->isEHPad()) {
      // Don't rewrite to a landing pad fallthough.  That could lead to the case
      // where a BB jumps to more than one landing pad.
      // TODO: Is it ever worth rewriting predecessors which don't already
      // jump to a landing pad, and so can safely jump to the fallthrough?
    } else if (MBB->isSuccessor(&*FallThrough)) {
      // Rewrite all predecessors of the old block to go to the fallthrough
      // instead.
      while (!MBB->pred_empty()) {
        MachineBasicBlock *Pred = *(MBB->pred_end()-1);
        Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
      }
      // If MBB was the target of a jump table, update jump tables to go to the
      // fallthrough instead.
      if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
        MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
      MadeChange = true;
    }
    return MadeChange;
  }
  // Check to see if we can simplify the terminator of the block before this
  // one.
  MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
  MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
  SmallVector<MachineOperand, 4> PriorCond;
  bool PriorUnAnalyzable =
      TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
  if (!PriorUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
                                              !PriorCond.empty());
    // If the previous branch is conditional and both conditions go to the same
    // destination, remove the branch, replacing it with an unconditional one or
    // a fall-through.
    if (PriorTBB && PriorTBB == PriorFBB) {
      DebugLoc dl = getBranchDebugLoc(PrevBB);
      TII->removeBranch(PrevBB);
      PriorCond.clear();
      if (PriorTBB != MBB)
        TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }
    // If the previous block unconditionally falls through to this block and
    // this block has no other predecessors, move the contents of this block
    // into the prior block. This doesn't usually happen when SimplifyCFG
    // has been used, but it can happen if tail merging splits a fall-through
    // predecessor of a block.
    // This has to check PrevBB->succ_size() because EH edges are ignored by
    // AnalyzeBranch.
    if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
        PrevBB.succ_size() == 1 &&
        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
      DEBUG(dbgs() << "\nMerging into block: " << PrevBB
                   << "From MBB: " << *MBB);
      // Remove redundant DBG_VALUEs first.
      if (PrevBB.begin() != PrevBB.end()) {
        MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
        --PrevBBIter;
        MachineBasicBlock::iterator MBBIter = MBB->begin();
        // Check if DBG_VALUE at the end of PrevBB is identical to the
        // DBG_VALUE at the beginning of MBB.
        while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
               && PrevBBIter->isDebugValue() && MBBIter->isDebugValue()) {
          if (!MBBIter->isIdenticalTo(*PrevBBIter))
            break;
          MachineInstr &DuplicateDbg = *MBBIter;
          ++MBBIter; -- PrevBBIter;
          DuplicateDbg.eraseFromParent();
        }
      }
      PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
      PrevBB.removeSuccessor(PrevBB.succ_begin());
      assert(PrevBB.succ_empty());
      PrevBB.transferSuccessors(MBB);
      MadeChange = true;
      return MadeChange;
    }
    // If the previous branch *only* branches to *this* block (conditional or
    // not) remove the branch.
    if (PriorTBB == MBB && !PriorFBB) {
      TII->removeBranch(PrevBB);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }
    // If the prior block branches somewhere else on the condition and here if
    // the condition is false, remove the uncond second branch.
    if (PriorFBB == MBB) {
      DebugLoc dl = getBranchDebugLoc(PrevBB);
      TII->removeBranch(PrevBB);
      TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
      MadeChange = true;
      ++NumBranchOpts;
      goto ReoptimizeBlock;
    }
    // If the prior block branches here on true and somewhere else on false, and
    // if the branch condition is reversible, reverse the branch to create a
    // fall-through.
    if (PriorTBB == MBB) {
      SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
      if (!TII->reverseBranchCondition(NewPriorCond)) {
        DebugLoc dl = getBranchDebugLoc(PrevBB);
        TII->removeBranch(PrevBB);
        TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
        MadeChange = true;
        ++NumBranchOpts;
        goto ReoptimizeBlock;
      }
    }
    // If this block has no successors (e.g. it is a return block or ends with
    // a call to a no-return function like abort or __cxa_throw) and if the pred
    // falls through into this block, and if it would otherwise fall through
    // into the block after this, move this block to the end of the function.
    //
    // We consider it more likely that execution will stay in the function (e.g.
    // due to loops) than it is to exit it.  This asserts in loops etc, moving
    // the assert condition out of the loop body.
    if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
        MachineFunction::iterator(PriorTBB) == FallThrough &&
        !MBB->canFallThrough()) {
      bool DoTransform = true;
      // We have to be careful that the succs of PredBB aren't both no-successor
      // blocks.  If neither have successors and if PredBB is the second from
      // last block in the function, we'd just keep swapping the two blocks for
      // last.  Only do the swap if one is clearly better to fall through than
      // the other.
      if (FallThrough == --MF.end() &&
          !IsBetterFallthrough(PriorTBB, MBB))
        DoTransform = false;
      if (DoTransform) {
        // Reverse the branch so we will fall through on the previous true cond.
        SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
        if (!TII->reverseBranchCondition(NewPriorCond)) {
          DEBUG(dbgs() << "\nMoving MBB: " << *MBB
                       << "To make fallthrough to: " << *PriorTBB << "\n");
          DebugLoc dl = getBranchDebugLoc(PrevBB);
          TII->removeBranch(PrevBB);
          TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
          // Move this block to the end of the function.
          MBB->moveAfter(&MF.back());
          MadeChange = true;
          ++NumBranchOpts;
          return MadeChange;
        }
      }
    }
  }
  if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
      MF.getFunction().optForSize()) {
    // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
    // direction, thereby defeating careful block placement and regressing
    // performance. Therefore, only consider this for optsize functions.
    MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
    if (TII->isUnconditionalTailCall(TailCall)) {
      MachineBasicBlock *Pred = *MBB->pred_begin();
      MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
      SmallVector<MachineOperand, 4> PredCond;
      bool PredAnalyzable =
          !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
      if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
          PredTBB != PredFBB) {
        // The predecessor has a conditional branch to this block which consists
        // of only a tail call. Try to fold the tail call into the conditional
        // branch.
        if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
          // TODO: It would be nice if analyzeBranch() could provide a pointer
          // to the branch instruction so replaceBranchWithTailCall() doesn't
          // have to search for it.
          TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
          ++NumTailCalls;
          Pred->removeSuccessor(MBB);
          MadeChange = true;
          return MadeChange;
        }
      }
      // If the predecessor is falling through to this block, we could reverse
      // the branch condition and fold the tail call into that. However, after
      // that we might have to re-arrange the CFG to fall through to the other
      // block and there is a high risk of regressing code size rather than
      // improving it.
    }
  }
  // Analyze the branch in the current block.
  MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
  SmallVector<MachineOperand, 4> CurCond;
  bool CurUnAnalyzable =
      TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
  if (!CurUnAnalyzable) {
    // If the CFG for the prior block has extra edges, remove them.
    MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
    // If this is a two-way branch, and the FBB branches to this block, reverse
    // the condition so the single-basic-block loop is faster.  Instead of:
    //    Loop: xxx; jcc Out; jmp Loop
    // we want:
    //    Loop: xxx; jncc Loop; jmp Out
    if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
      SmallVector<MachineOperand, 4> NewCond(CurCond);
      if (!TII->reverseBranchCondition(NewCond)) {
        DebugLoc dl = getBranchDebugLoc(*MBB);
        TII->removeBranch(*MBB);
        TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
        MadeChange = true;
        ++NumBranchOpts;
        goto ReoptimizeBlock;
      }
    }
    // If this branch is the only thing in its block, see if we can forward
    // other blocks across it.
    if (CurTBB && CurCond.empty() && !CurFBB &&
        IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
        !MBB->hasAddressTaken() && !MBB->isEHPad()) {
      DebugLoc dl = getBranchDebugLoc(*MBB);
      // This block may contain just an unconditional branch.  Because there can
      // be 'non-branch terminators' in the block, try removing the branch and
      // then seeing if the block is empty.
      TII->removeBranch(*MBB);
      // If the only things remaining in the block are debug info, remove these
      // as well, so this will behave the same as an empty block in non-debug
      // mode.
      if (IsEmptyBlock(MBB)) {
        // Make the block empty, losing the debug info (we could probably
        // improve this in some cases.)
        MBB->erase(MBB->begin(), MBB->end());
      }
      // If this block is just an unconditional branch to CurTBB, we can
      // usually completely eliminate the block.  The only case we cannot
      // completely eliminate the block is when the block before this one
      // falls through into MBB and we can't understand the prior block's branch
      // condition.
      if (MBB->empty()) {
        bool PredHasNoFallThrough = !PrevBB.canFallThrough();
        if (PredHasNoFallThrough || !PriorUnAnalyzable ||
            !PrevBB.isSuccessor(MBB)) {
          // If the prior block falls through into us, turn it into an
          // explicit branch to us to make updates simpler.
          if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
              PriorTBB != MBB && PriorFBB != MBB) {
            if (!PriorTBB) {
              assert(PriorCond.empty() && !PriorFBB &&
                     "Bad branch analysis");
              PriorTBB = MBB;
            } else {
              assert(!PriorFBB && "Machine CFG out of date!");
              PriorFBB = MBB;
            }
            DebugLoc pdl = getBranchDebugLoc(PrevBB);
            TII->removeBranch(PrevBB);
            TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
          }
          // Iterate through all the predecessors, revectoring each in-turn.
          size_t PI = 0;
          bool DidChange = false;
          bool HasBranchToSelf = false;
          while(PI != MBB->pred_size()) {
            MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
            if (PMBB == MBB) {
              // If this block has an uncond branch to itself, leave it.
              ++PI;
              HasBranchToSelf = true;
            } else {
              DidChange = true;
              PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
              // If this change resulted in PMBB ending in a conditional
              // branch where both conditions go to the same destination,
              // change this to an unconditional branch (and fix the CFG).
              MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
              SmallVector<MachineOperand, 4> NewCurCond;
              bool NewCurUnAnalyzable = TII->analyzeBranch(
                  *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
              if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
                DebugLoc pdl = getBranchDebugLoc(*PMBB);
                TII->removeBranch(*PMBB);
                NewCurCond.clear();
                TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
                MadeChange = true;
                ++NumBranchOpts;
                PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
              }
            }
          }
          // Change any jumptables to go to the new MBB.
          if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
            MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
          if (DidChange) {
            ++NumBranchOpts;
            MadeChange = true;
            if (!HasBranchToSelf) return MadeChange;
          }
        }
      }
      // Add the branch back if the block is more than just an uncond branch.
      TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
    }
  }
  // If the prior block doesn't fall through into this block, and if this
  // block doesn't fall through into some other block, see if we can find a
  // place to move this block where a fall-through will happen.
  if (!PrevBB.canFallThrough()) {
    // Now we know that there was no fall-through into this block, check to
    // see if it has a fall-through into its successor.
    bool CurFallsThru = MBB->canFallThrough();
    if (!MBB->isEHPad()) {
      // Check all the predecessors of this block.  If one of them has no fall
      // throughs, move this block right after it.
      for (MachineBasicBlock *PredBB : MBB->predecessors()) {
        // Analyze the branch at the end of the pred.
        MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
        SmallVector<MachineOperand, 4> PredCond;
        if (PredBB != MBB && !PredBB->canFallThrough() &&
            !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
            (!CurFallsThru || !CurTBB || !CurFBB) &&
            (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
          // If the current block doesn't fall through, just move it.
          // If the current block can fall through and does not end with a
          // conditional branch, we need to append an unconditional jump to
          // the (current) next block.  To avoid a possible compile-time
          // infinite loop, move blocks only backward in this case.
          // Also, if there are already 2 branches here, we cannot add a third;
          // this means we have the case
          // Bcc next
          // B elsewhere
          // next:
          if (CurFallsThru) {
            MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
            CurCond.clear();
            TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
          }
          MBB->moveAfter(PredBB);
          MadeChange = true;
          goto ReoptimizeBlock;
        }
      }
    }
    if (!CurFallsThru) {
      // Check all successors to see if we can move this block before it.
      for (MachineBasicBlock *SuccBB : MBB->successors()) {
        // Analyze the branch at the end of the block before the succ.
        MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
        // If this block doesn't already fall-through to that successor, and if
        // the succ doesn't already have a block that can fall through into it,
        // and if the successor isn't an EH destination, we can arrange for the
        // fallthrough to happen.
        if (SuccBB != MBB && &*SuccPrev != MBB &&
            !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
            !SuccBB->isEHPad()) {
          MBB->moveBefore(SuccBB);
          MadeChange = true;
          goto ReoptimizeBlock;
        }
      }
      // Okay, there is no really great place to put this block.  If, however,
      // the block before this one would be a fall-through if this block were
      // removed, move this block to the end of the function. There is no real
      // advantage in "falling through" to an EH block, so we don't want to
      // perform this transformation for that case.
      //
      // Also, Windows EH introduced the possibility of an arbitrary number of
      // successors to a given block.  The analyzeBranch call does not consider
      // exception handling and so we can get in a state where a block
      // containing a call is followed by multiple EH blocks that would be
      // rotated infinitely at the end of the function if the transformation
      // below were performed for EH "FallThrough" blocks.  Therefore, even if
      // that appears not to be happening anymore, we should assume that it is
      // possible and not remove the "!FallThrough()->isEHPad" condition below.
      MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
      SmallVector<MachineOperand, 4> PrevCond;
      if (FallThrough != MF.end() &&
          !FallThrough->isEHPad() &&
          !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
          PrevBB.isSuccessor(&*FallThrough)) {
        MBB->moveAfter(&MF.back());
        MadeChange = true;
        return MadeChange;
      }
    }
  }
  return MadeChange;
}
//===----------------------------------------------------------------------===//
//  Hoist Common Code
//===----------------------------------------------------------------------===//
bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
  bool MadeChange = false;
  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
    MachineBasicBlock *MBB = &*I++;
    MadeChange |= HoistCommonCodeInSuccs(MBB);
  }
  return MadeChange;
}
/// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
/// its 'true' successor.
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
                                         MachineBasicBlock *TrueBB) {
  for (MachineBasicBlock *SuccBB : BB->successors())
    if (SuccBB != TrueBB)
      return SuccBB;
  return nullptr;
}
template <class Container>
static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
                                Container &Set) {
  if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
      Set.insert(*AI);
  } else {
    Set.insert(Reg);
  }
}
/// findHoistingInsertPosAndDeps - Find the location to move common instructions
/// in successors to. The location is usually just before the terminator,
/// however if the terminator is a conditional branch and its previous
/// instruction is the flag setting instruction, the previous instruction is
/// the preferred location. This function also gathers uses and defs of the
/// instructions from the insertion point to the end of the block. The data is
/// used by HoistCommonCodeInSuccs to ensure safety.
static
MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
                                                  const TargetInstrInfo *TII,
                                                  const TargetRegisterInfo *TRI,
                                                  SmallSet<unsigned,4> &Uses,
                                                  SmallSet<unsigned,4> &Defs) {
  MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
  if (!TII->isUnpredicatedTerminator(*Loc))
    return MBB->end();
  for (const MachineOperand &MO : Loc->operands()) {
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isUse()) {
      addRegAndItsAliases(Reg, TRI, Uses);
    } else {
      if (!MO.isDead())
        // Don't try to hoist code in the rare case the terminator defines a
        // register that is later used.
        return MBB->end();
      // If the terminator defines a register, make sure we don't hoist
      // the instruction whose def might be clobbered by the terminator.
      addRegAndItsAliases(Reg, TRI, Defs);
    }
  }
  if (Uses.empty())
    return Loc;
  if (Loc == MBB->begin())
    return MBB->end();
  // The terminator is probably a conditional branch, try not to separate the
  // branch from condition setting instruction.
  MachineBasicBlock::iterator PI =
    skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
  bool IsDef = false;
  for (const MachineOperand &MO : PI->operands()) {
    // If PI has a regmask operand, it is probably a call. Separate away.
    if (MO.isRegMask())
      return Loc;
    if (!MO.isReg() || MO.isUse())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    if (Uses.count(Reg)) {
      IsDef = true;
      break;
    }
  }
  if (!IsDef)
    // The condition setting instruction is not just before the conditional
    // branch.
    return Loc;
  // Be conservative, don't insert instruction above something that may have
  // side-effects. And since it's potentially bad to separate flag setting
  // instruction from the conditional branch, just abort the optimization
  // completely.
  // Also avoid moving code above predicated instruction since it's hard to
  // reason about register liveness with predicated instruction.
  bool DontMoveAcrossStore = true;
  if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
    return MBB->end();
  // Find out what registers are live. Note this routine is ignoring other live
  // registers which are only used by instructions in successor blocks.
  for (const MachineOperand &MO : PI->operands()) {
    if (!MO.isReg())
      continue;
    unsigned Reg = MO.getReg();
    if (!Reg)
      continue;
    if (MO.isUse()) {
      addRegAndItsAliases(Reg, TRI, Uses);
    } else {
      if (Uses.erase(Reg)) {
        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
            Uses.erase(*SubRegs); // Use sub-registers to be conservative
        }
      }
      addRegAndItsAliases(Reg, TRI, Defs);
    }
  }
  return PI;
}
bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
    return false;
  if (!FBB) FBB = findFalseBlock(MBB, TBB);
  if (!FBB)
    // Malformed bcc? True and false blocks are the same?
    return false;
  // Restrict the optimization to cases where MBB is the only predecessor,
  // it is an obvious win.
  if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
    return false;
  // Find a suitable position to hoist the common instructions to. Also figure
  // out which registers are used or defined by instructions from the insertion
  // point to the end of the block.
  SmallSet<unsigned, 4> Uses, Defs;
  MachineBasicBlock::iterator Loc =
    findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
  if (Loc == MBB->end())
    return false;
  bool HasDups = false;
  SmallVector<unsigned, 4> LocalDefs, LocalKills;
  SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
  MachineBasicBlock::iterator TIB = TBB->begin();
  MachineBasicBlock::iterator FIB = FBB->begin();
  MachineBasicBlock::iterator TIE = TBB->end();
  MachineBasicBlock::iterator FIE = FBB->end();
  while (TIB != TIE && FIB != FIE) {
    // Skip dbg_value instructions. These do not count.
    TIB = skipDebugInstructionsForward(TIB, TIE);
    FIB = skipDebugInstructionsForward(FIB, FIE);
    if (TIB == TIE || FIB == FIE)
      break;
    if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
      break;
    if (TII->isPredicated(*TIB))
      // Hard to reason about register liveness with predicated instruction.
      break;
    bool IsSafe = true;
    for (MachineOperand &MO : TIB->operands()) {
      // Don't attempt to hoist instructions with register masks.
      if (MO.isRegMask()) {
        IsSafe = false;
        break;
      }
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      if (MO.isDef()) {
        if (Uses.count(Reg)) {
          // Avoid clobbering a register that's used by the instruction at
          // the point of insertion.
          IsSafe = false;
          break;
        }
        if (Defs.count(Reg) && !MO.isDead()) {
          // Don't hoist the instruction if the def would be clobber by the
          // instruction at the point insertion. FIXME: This is overly
          // conservative. It should be possible to hoist the instructions
          // in BB2 in the following example:
          // BB1:
          // r1, eflag = op1 r2, r3
          // brcc eflag
          //
          // BB2:
          // r1 = op2, ...
          //    = op3, killed r1
          IsSafe = false;
          break;
        }
      } else if (!ActiveDefsSet.count(Reg)) {
        if (Defs.count(Reg)) {
          // Use is defined by the instruction at the point of insertion.
          IsSafe = false;
          break;
        }
        if (MO.isKill() && Uses.count(Reg))
          // Kills a register that's read by the instruction at the point of
          // insertion. Remove the kill marker.
          MO.setIsKill(false);
      }
    }
    if (!IsSafe)
      break;
    bool DontMoveAcrossStore = true;
    if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
      break;
    // Remove kills from ActiveDefsSet, these registers had short live ranges.
    for (const MachineOperand &MO : TIB->operands()) {
      if (!MO.isReg() || !MO.isUse() || !MO.isKill())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      if (!AllDefsSet.count(Reg)) {
        LocalKills.push_back(Reg);
        continue;
      }
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
          ActiveDefsSet.erase(*AI);
      } else {
        ActiveDefsSet.erase(Reg);
      }
    }
    // Track local defs so we can update liveins.
    for (const MachineOperand &MO : TIB->operands()) {
      if (!MO.isReg() || !MO.isDef() || MO.isDead())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg))
        continue;
      LocalDefs.push_back(Reg);
      addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
      addRegAndItsAliases(Reg, TRI, AllDefsSet);
    }
    HasDups = true;
    ++TIB;
    ++FIB;
  }
  if (!HasDups)
    return false;
  MBB->splice(Loc, TBB, TBB->begin(), TIB);
  FBB->erase(FBB->begin(), FIB);
  // Update livein's.
  bool ChangedLiveIns = false;
  for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) {
    unsigned Def = LocalDefs[i];
    if (ActiveDefsSet.count(Def)) {
      TBB->addLiveIn(Def);
      FBB->addLiveIn(Def);
      ChangedLiveIns = true;
    }
  }
  for (unsigned K : LocalKills) {
    TBB->removeLiveIn(K);
    FBB->removeLiveIn(K);
    ChangedLiveIns = true;
  }
  if (ChangedLiveIns) {
    TBB->sortUniqueLiveIns();
    FBB->sortUniqueLiveIns();
  }
  ++NumHoist;
  return true;
}
 |