1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
|
//===- DWARFUnit.cpp ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) {
const DWARFObject &D = C.getDWARFObj();
parseImpl(C, Section, C.getDebugAbbrev(), &D.getRangeSection(),
D.getStringSection(), D.getStringOffsetSection(),
&D.getAddrSection(), D.getLineSection(), D.isLittleEndian(), false,
false);
}
void DWARFUnitSectionBase::parseDWO(DWARFContext &C,
const DWARFSection &DWOSection, bool Lazy) {
const DWARFObject &D = C.getDWARFObj();
parseImpl(C, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(),
D.getStringDWOSection(), D.getStringOffsetDWOSection(),
&D.getAddrSection(), D.getLineDWOSection(), C.isLittleEndian(),
true, Lazy);
}
DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
const DWARFDebugAbbrev *DA, const DWARFSection *RS,
StringRef SS, const DWARFSection &SOS,
const DWARFSection *AOS, const DWARFSection &LS, bool LE,
bool IsDWO, const DWARFUnitSectionBase &UnitSection,
const DWARFUnitIndex::Entry *IndexEntry)
: Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS),
LineSection(LS), StringSection(SS), StringOffsetSection(SOS),
AddrOffsetSection(AOS), isLittleEndian(LE), isDWO(IsDWO),
UnitSection(UnitSection), IndexEntry(IndexEntry) {
clear();
}
DWARFUnit::~DWARFUnit() = default;
DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian,
getAddressByteSize());
}
bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index,
uint64_t &Result) const {
uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize();
if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
return false;
DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
isLittleEndian, getAddressByteSize());
Result = DA.getRelocatedAddress(&Offset);
return true;
}
bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index,
uint64_t &Result) const {
if (!StringOffsetsTableContribution)
return false;
unsigned ItemSize = getDwarfStringOffsetsByteSize();
uint32_t Offset = getStringOffsetsBase() + Index * ItemSize;
if (StringOffsetSection.Data.size() < Offset + ItemSize)
return false;
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
isLittleEndian, 0);
Result = DA.getRelocatedValue(ItemSize, &Offset);
return true;
}
bool DWARFUnit::extractImpl(DataExtractor debug_info, uint32_t *offset_ptr) {
Length = debug_info.getU32(offset_ptr);
// FIXME: Support DWARF64.
FormParams.Format = DWARF32;
FormParams.Version = debug_info.getU16(offset_ptr);
if (FormParams.Version >= 5) {
UnitType = debug_info.getU8(offset_ptr);
FormParams.AddrSize = debug_info.getU8(offset_ptr);
AbbrOffset = debug_info.getU32(offset_ptr);
} else {
AbbrOffset = debug_info.getU32(offset_ptr);
FormParams.AddrSize = debug_info.getU8(offset_ptr);
}
if (IndexEntry) {
if (AbbrOffset)
return false;
auto *UnitContrib = IndexEntry->getOffset();
if (!UnitContrib || UnitContrib->Length != (Length + 4))
return false;
auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV);
if (!AbbrEntry)
return false;
AbbrOffset = AbbrEntry->Offset;
}
bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1);
bool VersionOK = DWARFContext::isSupportedVersion(getVersion());
bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8;
if (!LengthOK || !VersionOK || !AddrSizeOK)
return false;
// Keep track of the highest DWARF version we encounter across all units.
Context.setMaxVersionIfGreater(getVersion());
return true;
}
bool DWARFUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) {
clear();
Offset = *offset_ptr;
if (debug_info.isValidOffset(*offset_ptr)) {
if (extractImpl(debug_info, offset_ptr))
return true;
// reset the offset to where we tried to parse from if anything went wrong
*offset_ptr = Offset;
}
return false;
}
bool DWARFUnit::extractRangeList(uint32_t RangeListOffset,
DWARFDebugRangeList &RangeList) const {
// Require that compile unit is extracted.
assert(!DieArray.empty());
DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
isLittleEndian, getAddressByteSize());
uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
return RangeList.extract(RangesData, &ActualRangeListOffset);
}
void DWARFUnit::clear() {
Offset = 0;
Length = 0;
Abbrevs = nullptr;
FormParams = DWARFFormParams({0, 0, DWARF32});
BaseAddr.reset();
RangeSectionBase = 0;
AddrOffsetSectionBase = 0;
clearDIEs(false);
DWO.reset();
}
const char *DWARFUnit::getCompilationDir() {
return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
}
Optional<uint64_t> DWARFUnit::getDWOId() {
return toUnsigned(getUnitDIE().find(DW_AT_GNU_dwo_id));
}
void DWARFUnit::extractDIEsToVector(
bool AppendCUDie, bool AppendNonCUDies,
std::vector<DWARFDebugInfoEntry> &Dies) const {
if (!AppendCUDie && !AppendNonCUDies)
return;
// Set the offset to that of the first DIE and calculate the start of the
// next compilation unit header.
uint32_t DIEOffset = Offset + getHeaderSize();
uint32_t NextCUOffset = getNextUnitOffset();
DWARFDebugInfoEntry DIE;
DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
uint32_t Depth = 0;
bool IsCUDie = true;
while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
Depth)) {
if (IsCUDie) {
if (AppendCUDie)
Dies.push_back(DIE);
if (!AppendNonCUDies)
break;
// The average bytes per DIE entry has been seen to be
// around 14-20 so let's pre-reserve the needed memory for
// our DIE entries accordingly.
Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
IsCUDie = false;
} else {
Dies.push_back(DIE);
}
if (const DWARFAbbreviationDeclaration *AbbrDecl =
DIE.getAbbreviationDeclarationPtr()) {
// Normal DIE
if (AbbrDecl->hasChildren())
++Depth;
} else {
// NULL DIE.
if (Depth > 0)
--Depth;
if (Depth == 0)
break; // We are done with this compile unit!
}
}
// Give a little bit of info if we encounter corrupt DWARF (our offset
// should always terminate at or before the start of the next compilation
// unit header).
if (DIEOffset > NextCUOffset)
fprintf(stderr, "warning: DWARF compile unit extends beyond its "
"bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), DIEOffset);
}
size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
if ((CUDieOnly && !DieArray.empty()) ||
DieArray.size() > 1)
return 0; // Already parsed.
bool HasCUDie = !DieArray.empty();
extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);
if (DieArray.empty())
return 0;
// If CU DIE was just parsed, copy several attribute values from it.
if (!HasCUDie) {
DWARFDie UnitDie = getUnitDIE();
Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
if (Optional<uint64_t> Addr = toAddress(PC))
setBaseAddress({*Addr, PC->getSectionIndex()});
if (!isDWO) {
assert(AddrOffsetSectionBase == 0);
assert(RangeSectionBase == 0);
AddrOffsetSectionBase =
toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0);
RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
}
// In general, in DWARF v5 and beyond we derive the start of the unit's
// contribution to the string offsets table from the unit DIE's
// DW_AT_str_offsets_base attribute. Split DWARF units do not use this
// attribute, so we assume that there is a contribution to the string
// offsets table starting at offset 0 of the debug_str_offsets.dwo section.
// In both cases we need to determine the format of the contribution,
// which may differ from the unit's format.
uint64_t StringOffsetsContributionBase =
isDWO ? 0 : toSectionOffset(UnitDie.find(DW_AT_str_offsets_base), 0);
if (IndexEntry)
if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS))
StringOffsetsContributionBase += C->Offset;
DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
isLittleEndian, 0);
if (isDWO)
StringOffsetsTableContribution =
determineStringOffsetsTableContributionDWO(
DA, StringOffsetsContributionBase);
else if (getVersion() >= 5)
StringOffsetsTableContribution = determineStringOffsetsTableContribution(
DA, StringOffsetsContributionBase);
// Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
// skeleton CU DIE, so that DWARF users not aware of it are not broken.
}
return DieArray.size();
}
bool DWARFUnit::parseDWO() {
if (isDWO)
return false;
if (DWO.get())
return false;
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return false;
auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
if (!DWOFileName)
return false;
auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
SmallString<16> AbsolutePath;
if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
*CompilationDir) {
sys::path::append(AbsolutePath, *CompilationDir);
}
sys::path::append(AbsolutePath, *DWOFileName);
auto DWOId = getDWOId();
if (!DWOId)
return false;
auto DWOContext = Context.getDWOContext(AbsolutePath);
if (!DWOContext)
return false;
DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
if (!DWOCU)
return false;
DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
// Share .debug_addr and .debug_ranges section with compile unit in .dwo
DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase);
auto DWORangesBase = UnitDie.getRangesBaseAttribute();
DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0);
return true;
}
void DWARFUnit::clearDIEs(bool KeepCUDie) {
if (DieArray.size() > (unsigned)KeepCUDie) {
DieArray.resize((unsigned)KeepCUDie);
DieArray.shrink_to_fit();
}
}
void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) {
DWARFDie UnitDie = getUnitDIE();
if (!UnitDie)
return;
// First, check if unit DIE describes address ranges for the whole unit.
const auto &CUDIERanges = UnitDie.getAddressRanges();
if (!CUDIERanges.empty()) {
CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end());
return;
}
// This function is usually called if there in no .debug_aranges section
// in order to produce a compile unit level set of address ranges that
// is accurate. If the DIEs weren't parsed, then we don't want all dies for
// all compile units to stay loaded when they weren't needed. So we can end
// up parsing the DWARF and then throwing them all away to keep memory usage
// down.
const bool ClearDIEs = extractDIEsIfNeeded(false) > 1;
getUnitDIE().collectChildrenAddressRanges(CURanges);
// Collect address ranges from DIEs in .dwo if necessary.
bool DWOCreated = parseDWO();
if (DWO)
DWO->collectAddressRanges(CURanges);
if (DWOCreated)
DWO.reset();
// Keep memory down by clearing DIEs if this generate function
// caused them to be parsed.
if (ClearDIEs)
clearDIEs(true);
}
// Populates a map from PC addresses to subprogram DIEs.
//
// This routine tries to look at the smallest amount of the debug info it can
// to locate the DIEs. This is because many subprograms will never end up being
// read or needed at all. We want to be as lazy as possible.
void DWARFUnit::buildSubprogramDIEAddrMap() {
assert(SubprogramDIEAddrMap.empty() && "Must only build this map once!");
SmallVector<DWARFDie, 16> Worklist;
Worklist.push_back(getUnitDIE());
do {
DWARFDie Die = Worklist.pop_back_val();
// Queue up child DIEs to recurse through.
// FIXME: This causes us to read a lot more debug info than we really need.
// We should look at pruning out DIEs which cannot transitively hold
// separate subprograms.
for (DWARFDie Child : Die.children())
Worklist.push_back(Child);
// If handling a non-subprogram DIE, nothing else to do.
if (!Die.isSubprogramDIE())
continue;
// For subprogram DIEs, store them, and insert relevant markers into the
// address map. We don't care about overlap at all here as DWARF doesn't
// meaningfully support that, so we simply will insert a range with no DIE
// starting from the high PC. In the event there are overlaps, sorting
// these may truncate things in surprising ways but still will allow
// lookups to proceed.
int DIEIndex = SubprogramDIEAddrInfos.size();
SubprogramDIEAddrInfos.push_back({Die, (uint64_t)-1, {}});
for (const auto &R : Die.getAddressRanges()) {
// Ignore 0-sized ranges.
if (R.LowPC == R.HighPC)
continue;
SubprogramDIEAddrMap.push_back({R.LowPC, DIEIndex});
SubprogramDIEAddrMap.push_back({R.HighPC, -1});
if (R.LowPC < SubprogramDIEAddrInfos.back().SubprogramBasePC)
SubprogramDIEAddrInfos.back().SubprogramBasePC = R.LowPC;
}
} while (!Worklist.empty());
if (SubprogramDIEAddrMap.empty()) {
// If we found no ranges, create a no-op map so that lookups remain simple
// but never find anything.
SubprogramDIEAddrMap.push_back({0, -1});
return;
}
// Next, sort the ranges and remove both exact duplicates and runs with the
// same DIE index. We order the ranges so that non-empty ranges are
// preferred. Because there may be ties, we also need to use stable sort.
std::stable_sort(SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(),
[](const std::pair<uint64_t, int64_t> &LHS,
const std::pair<uint64_t, int64_t> &RHS) {
if (LHS.first < RHS.first)
return true;
if (LHS.first > RHS.first)
return false;
// For ranges that start at the same address, keep the one
// with a DIE.
if (LHS.second != -1 && RHS.second == -1)
return true;
return false;
});
SubprogramDIEAddrMap.erase(
std::unique(SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(),
[](const std::pair<uint64_t, int64_t> &LHS,
const std::pair<uint64_t, int64_t> &RHS) {
// If the start addresses are exactly the same, we can
// remove all but the first one as it is the only one that
// will be found and used.
//
// If the DIE indices are the same, we can "merge" the
// ranges by eliminating the second.
return LHS.first == RHS.first || LHS.second == RHS.second;
}),
SubprogramDIEAddrMap.end());
assert(SubprogramDIEAddrMap.back().second == -1 &&
"The last interval must not have a DIE as each DIE's address range is "
"bounded.");
}
// Build the second level of mapping from PC to DIE, specifically one that maps
// a PC *within* a particular DWARF subprogram into a precise, maximally nested
// inlined subroutine DIE (if any exists). We build a separate map for each
// subprogram because many subprograms will never get queried for an address
// and this allows us to be significantly lazier in reading the DWARF itself.
void DWARFUnit::buildInlinedSubroutineDIEAddrMap(
SubprogramDIEAddrInfo &SPInfo) {
auto &AddrMap = SPInfo.InlinedSubroutineDIEAddrMap;
uint64_t BasePC = SPInfo.SubprogramBasePC;
auto SubroutineAddrMapSorter = [](const std::pair<int, int> &LHS,
const std::pair<int, int> &RHS) {
if (LHS.first < RHS.first)
return true;
if (LHS.first > RHS.first)
return false;
// For ranges that start at the same address, keep the
// non-empty one.
if (LHS.second != -1 && RHS.second == -1)
return true;
return false;
};
auto SubroutineAddrMapUniquer = [](const std::pair<int, int> &LHS,
const std::pair<int, int> &RHS) {
// If the start addresses are exactly the same, we can
// remove all but the first one as it is the only one that
// will be found and used.
//
// If the DIE indices are the same, we can "merge" the
// ranges by eliminating the second.
return LHS.first == RHS.first || LHS.second == RHS.second;
};
struct DieAndParentIntervalRange {
DWARFDie Die;
int ParentIntervalsBeginIdx, ParentIntervalsEndIdx;
};
SmallVector<DieAndParentIntervalRange, 16> Worklist;
auto EnqueueChildDIEs = [&](const DWARFDie &Die, int ParentIntervalsBeginIdx,
int ParentIntervalsEndIdx) {
for (DWARFDie Child : Die.children())
Worklist.push_back(
{Child, ParentIntervalsBeginIdx, ParentIntervalsEndIdx});
};
EnqueueChildDIEs(SPInfo.SubprogramDIE, 0, 0);
while (!Worklist.empty()) {
DWARFDie Die = Worklist.back().Die;
int ParentIntervalsBeginIdx = Worklist.back().ParentIntervalsBeginIdx;
int ParentIntervalsEndIdx = Worklist.back().ParentIntervalsEndIdx;
Worklist.pop_back();
// If we encounter a nested subprogram, simply ignore it. We map to
// (disjoint) subprograms before arriving here and we don't want to examine
// any inlined subroutines of an unrelated subpragram.
if (Die.getTag() == DW_TAG_subprogram)
continue;
// For non-subroutines, just recurse to keep searching for inlined
// subroutines.
if (Die.getTag() != DW_TAG_inlined_subroutine) {
EnqueueChildDIEs(Die, ParentIntervalsBeginIdx, ParentIntervalsEndIdx);
continue;
}
// Capture the inlined subroutine DIE that we will reference from the map.
int DIEIndex = InlinedSubroutineDIEs.size();
InlinedSubroutineDIEs.push_back(Die);
int DieIntervalsBeginIdx = AddrMap.size();
// First collect the PC ranges for this DIE into our subroutine interval
// map.
for (auto R : Die.getAddressRanges()) {
// Clamp the PCs to be above the base.
R.LowPC = std::max(R.LowPC, BasePC);
R.HighPC = std::max(R.HighPC, BasePC);
// Compute relative PCs from the subprogram base and drop down to an
// unsigned 32-bit int to represent them within the data structure. This
// lets us cover a 4gb single subprogram. Because subprograms may be
// partitioned into distant parts of a binary (think hot/cold
// partitioning) we want to preserve as much as we can here without
// burning extra memory. Past that, we will simply truncate and lose the
// ability to map those PCs to a DIE more precise than the subprogram.
const uint32_t MaxRelativePC = std::numeric_limits<uint32_t>::max();
uint32_t RelativeLowPC = (R.LowPC - BasePC) > (uint64_t)MaxRelativePC
? MaxRelativePC
: (uint32_t)(R.LowPC - BasePC);
uint32_t RelativeHighPC = (R.HighPC - BasePC) > (uint64_t)MaxRelativePC
? MaxRelativePC
: (uint32_t)(R.HighPC - BasePC);
// Ignore empty or bogus ranges.
if (RelativeLowPC >= RelativeHighPC)
continue;
AddrMap.push_back({RelativeLowPC, DIEIndex});
AddrMap.push_back({RelativeHighPC, -1});
}
// If there are no address ranges, there is nothing to do to map into them
// and there cannot be any child subroutine DIEs with address ranges of
// interest as those would all be required to nest within this DIE's
// non-existent ranges, so we can immediately continue to the next DIE in
// the worklist.
if (DieIntervalsBeginIdx == (int)AddrMap.size())
continue;
// The PCs from this DIE should never overlap, so we can easily sort them
// here.
std::sort(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(),
SubroutineAddrMapSorter);
// Remove any dead ranges. These should only come from "empty" ranges that
// were clobbered by some other range.
AddrMap.erase(std::unique(AddrMap.begin() + DieIntervalsBeginIdx,
AddrMap.end(), SubroutineAddrMapUniquer),
AddrMap.end());
// Compute the end index of this DIE's addr map intervals.
int DieIntervalsEndIdx = AddrMap.size();
assert(DieIntervalsBeginIdx != DieIntervalsEndIdx &&
"Must not have an empty map for this layer!");
assert(AddrMap.back().second == -1 && "Must end with an empty range!");
assert(std::is_sorted(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(),
less_first()) &&
"Failed to sort this DIE's interals!");
// If we have any parent intervals, walk the newly added ranges and find
// the parent ranges they were inserted into. Both of these are sorted and
// neither has any overlaps. We need to append new ranges to split up any
// parent ranges these new ranges would overlap when we merge them.
if (ParentIntervalsBeginIdx != ParentIntervalsEndIdx) {
int ParentIntervalIdx = ParentIntervalsBeginIdx;
for (int i = DieIntervalsBeginIdx, e = DieIntervalsEndIdx - 1; i < e;
++i) {
const uint32_t IntervalStart = AddrMap[i].first;
const uint32_t IntervalEnd = AddrMap[i + 1].first;
const int IntervalDieIdx = AddrMap[i].second;
if (IntervalDieIdx == -1) {
// For empty intervals, nothing is required. This is a bit surprising
// however. If the prior interval overlaps a parent interval and this
// would be necessary to mark the end, we will synthesize a new end
// that switches back to the parent DIE below. And this interval will
// get dropped in favor of one with a DIE attached. However, we'll
// still include this and so worst-case, it will still end the prior
// interval.
continue;
}
// We are walking the new ranges in order, so search forward from the
// last point for a parent range that might overlap.
auto ParentIntervalsRange =
make_range(AddrMap.begin() + ParentIntervalIdx,
AddrMap.begin() + ParentIntervalsEndIdx);
assert(std::is_sorted(ParentIntervalsRange.begin(),
ParentIntervalsRange.end(), less_first()) &&
"Unsorted parent intervals can't be searched!");
auto PI = std::upper_bound(
ParentIntervalsRange.begin(), ParentIntervalsRange.end(),
IntervalStart,
[](uint32_t LHS, const std::pair<uint32_t, int32_t> &RHS) {
return LHS < RHS.first;
});
if (PI == ParentIntervalsRange.begin() ||
PI == ParentIntervalsRange.end())
continue;
ParentIntervalIdx = PI - AddrMap.begin();
int32_t &ParentIntervalDieIdx = std::prev(PI)->second;
uint32_t &ParentIntervalStart = std::prev(PI)->first;
const uint32_t ParentIntervalEnd = PI->first;
// If the new range starts exactly at the position of the parent range,
// we need to adjust the parent range. Note that these collisions can
// only happen with the original parent range because we will merge any
// adjacent ranges in the child.
if (IntervalStart == ParentIntervalStart) {
// If there will be a tail, just shift the start of the parent
// forward. Note that this cannot change the parent ordering.
if (IntervalEnd < ParentIntervalEnd) {
ParentIntervalStart = IntervalEnd;
continue;
}
// Otherwise, mark this as becoming empty so we'll remove it and
// prefer the child range.
ParentIntervalDieIdx = -1;
continue;
}
// Finally, if the parent interval will need to remain as a prefix to
// this one, insert a new interval to cover any tail.
if (IntervalEnd < ParentIntervalEnd)
AddrMap.push_back({IntervalEnd, ParentIntervalDieIdx});
}
}
// Note that we don't need to re-sort even this DIE's address map intervals
// after this. All of the newly added intervals actually fill in *gaps* in
// this DIE's address map, and we know that children won't need to lookup
// into those gaps.
// Recurse through its children, giving them the interval map range of this
// DIE to use as their parent intervals.
EnqueueChildDIEs(Die, DieIntervalsBeginIdx, DieIntervalsEndIdx);
}
if (AddrMap.empty()) {
AddrMap.push_back({0, -1});
return;
}
// Now that we've added all of the intervals needed, we need to resort and
// unique them. Most notably, this will remove all the empty ranges that had
// a parent range covering, etc. We only expect a single non-empty interval
// at any given start point, so we just use std::sort. This could potentially
// produce non-deterministic maps for invalid DWARF.
std::sort(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapSorter);
AddrMap.erase(
std::unique(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapUniquer),
AddrMap.end());
}
DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
extractDIEsIfNeeded(false);
// We use a two-level mapping structure to locate subroutines for a given PC
// address.
//
// First, we map the address to a subprogram. This can be done more cheaply
// because subprograms cannot nest within each other. It also allows us to
// avoid detailed examination of many subprograms, instead only focusing on
// the ones which we end up actively querying.
if (SubprogramDIEAddrMap.empty())
buildSubprogramDIEAddrMap();
assert(!SubprogramDIEAddrMap.empty() &&
"We must always end up with a non-empty map!");
auto I = std::upper_bound(
SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(), Address,
[](uint64_t LHS, const std::pair<uint64_t, int64_t> &RHS) {
return LHS < RHS.first;
});
// If we find the beginning, then the address is before the first subprogram.
if (I == SubprogramDIEAddrMap.begin())
return DWARFDie();
// Back up to the interval containing the address and see if it
// has a DIE associated with it.
--I;
if (I->second == -1)
return DWARFDie();
auto &SPInfo = SubprogramDIEAddrInfos[I->second];
// Now that we have the subprogram for this address, we do the second level
// mapping by building a map within a subprogram's PC range to any specific
// inlined subroutine.
if (SPInfo.InlinedSubroutineDIEAddrMap.empty())
buildInlinedSubroutineDIEAddrMap(SPInfo);
// We lookup within the inlined subroutine using a subprogram-relative
// address.
assert(Address >= SPInfo.SubprogramBasePC &&
"Address isn't above the start of the subprogram!");
uint32_t RelativeAddr = ((Address - SPInfo.SubprogramBasePC) >
(uint64_t)std::numeric_limits<uint32_t>::max())
? std::numeric_limits<uint32_t>::max()
: (uint32_t)(Address - SPInfo.SubprogramBasePC);
auto J =
std::upper_bound(SPInfo.InlinedSubroutineDIEAddrMap.begin(),
SPInfo.InlinedSubroutineDIEAddrMap.end(), RelativeAddr,
[](uint32_t LHS, const std::pair<uint32_t, int32_t> &RHS) {
return LHS < RHS.first;
});
// If we find the beginning, the address is before any inlined subroutine so
// return the subprogram DIE.
if (J == SPInfo.InlinedSubroutineDIEAddrMap.begin())
return SPInfo.SubprogramDIE;
// Back up `J` and return the inlined subroutine if we have one or the
// subprogram if we don't.
--J;
return J->second == -1 ? SPInfo.SubprogramDIE
: InlinedSubroutineDIEs[J->second];
}
void
DWARFUnit::getInlinedChainForAddress(uint64_t Address,
SmallVectorImpl<DWARFDie> &InlinedChain) {
assert(InlinedChain.empty());
// Try to look for subprogram DIEs in the DWO file.
parseDWO();
// First, find the subroutine that contains the given address (the leaf
// of inlined chain).
DWARFDie SubroutineDIE =
(DWO ? DWO.get() : this)->getSubroutineForAddress(Address);
while (SubroutineDIE) {
if (SubroutineDIE.isSubroutineDIE())
InlinedChain.push_back(SubroutineDIE);
SubroutineDIE = SubroutineDIE.getParent();
}
}
const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
DWARFSectionKind Kind) {
if (Kind == DW_SECT_INFO)
return Context.getCUIndex();
assert(Kind == DW_SECT_TYPES);
return Context.getTUIndex();
}
DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
const uint32_t Depth = Die->getDepth();
// Unit DIEs always have a depth of zero and never have parents.
if (Depth == 0)
return DWARFDie();
// Depth of 1 always means parent is the compile/type unit.
if (Depth == 1)
return getUnitDIE();
// Look for previous DIE with a depth that is one less than the Die's depth.
const uint32_t ParentDepth = Depth - 1;
for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) {
if (DieArray[I].getDepth() == ParentDepth)
return DWARFDie(this, &DieArray[I]);
}
return DWARFDie();
}
DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
if (!Die)
return DWARFDie();
uint32_t Depth = Die->getDepth();
// Unit DIEs always have a depth of zero and never have siblings.
if (Depth == 0)
return DWARFDie();
// NULL DIEs don't have siblings.
if (Die->getAbbreviationDeclarationPtr() == nullptr)
return DWARFDie();
// Find the next DIE whose depth is the same as the Die's depth.
for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx;
++I) {
if (DieArray[I].getDepth() == Depth)
return DWARFDie(this, &DieArray[I]);
}
return DWARFDie();
}
DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
if (!Die->hasChildren())
return DWARFDie();
// We do not want access out of bounds when parsing corrupted debug data.
size_t I = getDIEIndex(Die) + 1;
if (I >= DieArray.size())
return DWARFDie();
return DWARFDie(this, &DieArray[I]);
}
const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
if (!Abbrevs)
Abbrevs = Abbrev->getAbbreviationDeclarationSet(AbbrOffset);
return Abbrevs;
}
Optional<StrOffsetsContributionDescriptor>
StrOffsetsContributionDescriptor::validateContributionSize(
DWARFDataExtractor &DA) {
uint8_t EntrySize = getDwarfOffsetByteSize();
// In order to ensure that we don't read a partial record at the end of
// the section we validate for a multiple of the entry size.
uint64_t ValidationSize = alignTo(Size, EntrySize);
// Guard against overflow.
if (ValidationSize >= Size)
if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
return *this;
return Optional<StrOffsetsContributionDescriptor>();
}
// Look for a DWARF64-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Optional<StrOffsetsContributionDescriptor>
parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 16))
return Optional<StrOffsetsContributionDescriptor>();
if (DA.getU32(&Offset) != 0xffffffff)
return Optional<StrOffsetsContributionDescriptor>();
uint64_t Size = DA.getU64(&Offset);
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
return StrOffsetsContributionDescriptor(Offset, Size, Version, DWARF64);
//return Optional<StrOffsetsContributionDescriptor>(Descriptor);
}
// Look for a DWARF32-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Optional<StrOffsetsContributionDescriptor>
parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) {
if (!DA.isValidOffsetForDataOfSize(Offset, 8))
return Optional<StrOffsetsContributionDescriptor>();
uint32_t ContributionSize = DA.getU32(&Offset);
if (ContributionSize >= 0xfffffff0)
return Optional<StrOffsetsContributionDescriptor>();
uint8_t Version = DA.getU16(&Offset);
(void)DA.getU16(&Offset); // padding
return StrOffsetsContributionDescriptor(Offset, ContributionSize, Version, DWARF32);
//return Optional<StrOffsetsContributionDescriptor>(Descriptor);
}
Optional<StrOffsetsContributionDescriptor>
DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA,
uint64_t Offset) {
Optional<StrOffsetsContributionDescriptor> Descriptor;
// Attempt to find a DWARF64 contribution 16 bytes before the base.
if (Offset >= 16)
Descriptor =
parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16);
// Try to find a DWARF32 contribution 8 bytes before the base.
if (!Descriptor && Offset >= 8)
Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8);
return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor;
}
Optional<StrOffsetsContributionDescriptor>
DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA,
uint64_t Offset) {
if (getVersion() >= 5) {
// Look for a valid contribution at the given offset.
auto Descriptor =
parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset);
if (!Descriptor)
Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset);
return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor;
}
// Prior to DWARF v5, we derive the contribution size from the
// index table (in a package file). In a .dwo file it is simply
// the length of the string offsets section.
uint64_t Size = 0;
if (!IndexEntry)
Size = StringOffsetSection.Data.size();
else if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS))
Size = C->Length;
// Return a descriptor with the given offset as base, version 4 and
// DWARF32 format.
//return Optional<StrOffsetsContributionDescriptor>(
//StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32));
return StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32);
}
|