| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 
 | //
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that performs optimization on SIMD instructions
// with high latency by splitting them into more efficient series of
// instructions.
//
// 1. Rewrite certain SIMD instructions with vector element due to their
// inefficiency on some targets.
//
// For example:
//    fmla v0.4s, v1.4s, v2.s[1]
//
// Is rewritten into:
//    dup v3.4s, v2.s[1]
//    fmla v0.4s, v1.4s, v3.4s
//
// 2. Rewrite interleaved memory access instructions due to their
// inefficiency on some targets.
//
// For example:
//    st2 {v0.4s, v1.4s}, addr
//
// Is rewritten into:
//    zip1 v2.4s, v0.4s, v1.4s
//    zip2 v3.4s, v0.4s, v1.4s
//    stp  q2, q3,  addr
//
//===----------------------------------------------------------------------===//
#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include <unordered_map>
using namespace llvm;
#define DEBUG_TYPE "aarch64-simdinstr-opt"
STATISTIC(NumModifiedInstr,
          "Number of SIMD instructions modified");
#define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME                                     \
  "AArch64 SIMD instructions optimization pass"
namespace {
struct AArch64SIMDInstrOpt : public MachineFunctionPass {
  static char ID;
  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;
  TargetSchedModel SchedModel;
  // The two maps below are used to cache decisions instead of recomputing:
  // This is used to cache instruction replacement decisions within function
  // units and across function units.
  std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
  // This is used to cache the decision of whether to leave the interleaved
  // store instructions replacement pass early or not for a particular target.
  std::unordered_map<std::string, bool> InterlEarlyExit;
  typedef enum {
    VectorElem,
    Interleave
  } Subpass;
  // Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
  struct InstReplInfo {
    unsigned OrigOpc;
		std::vector<unsigned> ReplOpc;
    const TargetRegisterClass RC;
  };
#define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
  {OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
#define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
                OpcR7, OpcR8, OpcR9, RC) \
  {OpcOrg, \
   {OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
  // The Instruction Replacement Table:
  std::vector<InstReplInfo> IRT = {
    // ST2 instructions
    RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
          AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
          AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
          AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
          AArch64::STPDi, AArch64::FPR64RegClass),
    // ST4 instructions
    RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
          AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
          AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
          AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
          AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
          AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
          AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
          AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
          AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
          AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
          AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
          AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
          AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
    RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
          AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
          AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
          AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
    RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
          AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
          AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
          AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
  };
  // A costly instruction is replaced in this work by N efficient instructions
  // The maximum of N is curently 10 and it is for ST4 case.
  static const unsigned MaxNumRepl = 10;
  AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
    initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
  }
  /// Based only on latency of instructions, determine if it is cost efficient
  /// to replace the instruction InstDesc by the instructions stored in the
  /// array InstDescRepl.
  /// Return true if replacement is expected to be faster.
  bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
                         SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
  /// Determine if we need to exit the instruction replacement optimization
  /// passes early. This makes sure that no compile time is spent in this pass
  /// for targets with no need for any of these optimizations.
  /// Return true if early exit of the pass is recommended.
  bool shouldExitEarly(MachineFunction *MF, Subpass SP);
  /// Check whether an equivalent DUP instruction has already been
  /// created or not.
  /// Return true when the DUP instruction already exists. In this case,
  /// DestReg will point to the destination of the already created DUP.
  bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
                unsigned LaneNumber, unsigned *DestReg) const;
  /// Certain SIMD instructions with vector element operand are not efficient.
  /// Rewrite them into SIMD instructions with vector operands. This rewrite
  /// is driven by the latency of the instructions.
  /// Return true if the SIMD instruction is modified.
  bool optimizeVectElement(MachineInstr &MI);
  /// Process The REG_SEQUENCE instruction, and extract the source
  /// operands of the ST2/4 instruction from it.
  /// Example of such instructions.
  ///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
  /// Return true when the instruction is processed successfully.
  bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
                         unsigned* StRegKill, unsigned NumArg) const;
  /// Load/Store Interleaving instructions are not always beneficial.
  /// Replace them by ZIP instructionand classical load/store.
  /// Return true if the SIMD instruction is modified.
  bool optimizeLdStInterleave(MachineInstr &MI);
  /// Return the number of useful source registers for this
  /// instruction (2 for ST2 and 4 for ST4).
  unsigned determineSrcReg(MachineInstr &MI) const;
  bool runOnMachineFunction(MachineFunction &Fn) override;
  StringRef getPassName() const override {
    return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
  }
};
char AArch64SIMDInstrOpt::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
                AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
/// Based only on latency of instructions, determine if it is cost efficient
/// to replace the instruction InstDesc by the instructions stored in the
/// array InstDescRepl.
/// Return true if replacement is expected to be faster.
bool AArch64SIMDInstrOpt::
shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
                  SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
  // Check if replacement decision is already available in the cached table.
  // if so, return it.
  std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
  auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
  if (SIMDInstrTable.find(InstID) != SIMDInstrTable.end())
    return SIMDInstrTable[InstID];
  unsigned SCIdx = InstDesc->getSchedClass();
  const MCSchedClassDesc *SCDesc =
    SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
  // If a target does not define resources for the instructions
  // of interest, then return false for no replacement.
  const MCSchedClassDesc *SCDescRepl;
  if (!SCDesc->isValid() || SCDesc->isVariant())
  {
    SIMDInstrTable[InstID] = false;
    return false;
  }
  for (auto IDesc : InstDescRepl)
  {
    SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
      IDesc->getSchedClass());
    if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
    {
      SIMDInstrTable[InstID] = false;
      return false;
    }
  }
  // Replacement cost.
  unsigned ReplCost = 0;
  for (auto IDesc :InstDescRepl)
    ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
  if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
  {
    SIMDInstrTable[InstID] = true;
    return true;
  }
  else
  {
    SIMDInstrTable[InstID] = false;
    return false;
  }
}
/// Determine if we need to exit this pass for a kind of instruction replacement
/// early. This makes sure that no compile time is spent in this pass for
/// targets with no need for any of these optimizations beyond performing this
/// check.
/// Return true if early exit of this pass for a kind of instruction
/// replacement is recommended for a target.
bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
  const MCInstrDesc* OriginalMCID;
  SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
  switch (SP) {
  // For this optimization, check by comparing the latency of a representative
  // instruction to that of the replacement instructions.
  // TODO: check for all concerned instructions.
  case VectorElem:
    OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
    ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
    ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
    if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
      return false;
    break;
  // For this optimization, check for all concerned instructions.
  case Interleave:
    std::string Subtarget = SchedModel.getSubtargetInfo()->getCPU();
    if (InterlEarlyExit.find(Subtarget) != InterlEarlyExit.end())
      return InterlEarlyExit[Subtarget];
    for (auto &I : IRT) {
      OriginalMCID = &TII->get(I.OrigOpc);
      for (auto &Repl : I.ReplOpc)
        ReplInstrMCID.push_back(&TII->get(Repl));
      if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
        InterlEarlyExit[Subtarget] = false;
        return false;
      }
      ReplInstrMCID.clear();
    }
    InterlEarlyExit[Subtarget] = true;
    break;
  }
  return true;
}
/// Check whether an equivalent DUP instruction has already been
/// created or not.
/// Return true when the DUP instruction already exists. In this case,
/// DestReg will point to the destination of the already created DUP.
bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
                                         unsigned SrcReg, unsigned LaneNumber,
                                         unsigned *DestReg) const {
  for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
       MII != MIE;) {
    MII--;
    MachineInstr *CurrentMI = &*MII;
    if (CurrentMI->getOpcode() == DupOpcode &&
        CurrentMI->getNumOperands() == 3 &&
        CurrentMI->getOperand(1).getReg() == SrcReg &&
        CurrentMI->getOperand(2).getImm() == LaneNumber) {
      *DestReg = CurrentMI->getOperand(0).getReg();
      return true;
    }
  }
  return false;
}
/// Certain SIMD instructions with vector element operand are not efficient.
/// Rewrite them into SIMD instructions with vector operands. This rewrite
/// is driven by the latency of the instructions.
/// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
/// and FMULX and hence they are hardcoded.
///
/// For example:
///    fmla v0.4s, v1.4s, v2.s[1]
///
/// Is rewritten into
///    dup  v3.4s, v2.s[1]      // DUP not necessary if redundant
///    fmla v0.4s, v1.4s, v3.4s
///
/// Return true if the SIMD instruction is modified.
bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
  const MCInstrDesc *MulMCID, *DupMCID;
  const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
  switch (MI.getOpcode()) {
  default:
    return false;
  // 4X32 instructions
  case AArch64::FMLAv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMLAv4f32);
    break;
  case AArch64::FMLSv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMLSv4f32);
    break;
  case AArch64::FMULXv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMULXv4f32);
    break;
  case AArch64::FMULv4i32_indexed:
    DupMCID = &TII->get(AArch64::DUPv4i32lane);
    MulMCID = &TII->get(AArch64::FMULv4f32);
    break;
  // 2X64 instructions
  case AArch64::FMLAv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMLAv2f64);
    break;
  case AArch64::FMLSv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMLSv2f64);
    break;
  case AArch64::FMULXv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMULXv2f64);
    break;
  case AArch64::FMULv2i64_indexed:
    DupMCID = &TII->get(AArch64::DUPv2i64lane);
    MulMCID = &TII->get(AArch64::FMULv2f64);
    break;
  // 2X32 instructions
  case AArch64::FMLAv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMLAv2f32);
    break;
  case AArch64::FMLSv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMLSv2f32);
    break;
  case AArch64::FMULXv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMULXv2f32);
    break;
  case AArch64::FMULv2i32_indexed:
    RC = &AArch64::FPR64RegClass;
    DupMCID = &TII->get(AArch64::DUPv2i32lane);
    MulMCID = &TII->get(AArch64::FMULv2f32);
    break;
  }
  SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
  ReplInstrMCID.push_back(DupMCID);
  ReplInstrMCID.push_back(MulMCID);
  if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
                         ReplInstrMCID))
    return false;
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock &MBB = *MI.getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  // Get the operands of the current SIMD arithmetic instruction.
  unsigned MulDest = MI.getOperand(0).getReg();
  unsigned SrcReg0 = MI.getOperand(1).getReg();
  unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
  unsigned SrcReg1 = MI.getOperand(2).getReg();
  unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
  unsigned DupDest;
  // Instructions of interest have either 4 or 5 operands.
  if (MI.getNumOperands() == 5) {
    unsigned SrcReg2 = MI.getOperand(3).getReg();
    unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
    unsigned LaneNumber = MI.getOperand(4).getImm();
    // Create a new DUP instruction. Note that if an equivalent DUP instruction
    // has already been created before, then use that one instead of creating
    // a new one.
    if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
      DupDest = MRI.createVirtualRegister(RC);
      BuildMI(MBB, MI, DL, *DupMCID, DupDest)
          .addReg(SrcReg2, Src2IsKill)
          .addImm(LaneNumber);
    }
    BuildMI(MBB, MI, DL, *MulMCID, MulDest)
        .addReg(SrcReg0, Src0IsKill)
        .addReg(SrcReg1, Src1IsKill)
        .addReg(DupDest, Src2IsKill);
  } else if (MI.getNumOperands() == 4) {
    unsigned LaneNumber = MI.getOperand(3).getImm();
    if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
      DupDest = MRI.createVirtualRegister(RC);
      BuildMI(MBB, MI, DL, *DupMCID, DupDest)
          .addReg(SrcReg1, Src1IsKill)
          .addImm(LaneNumber);
    }
    BuildMI(MBB, MI, DL, *MulMCID, MulDest)
        .addReg(SrcReg0, Src0IsKill)
        .addReg(DupDest, Src1IsKill);
  } else {
    return false;
  }
  ++NumModifiedInstr;
  return true;
}
/// Load/Store Interleaving instructions are not always beneficial.
/// Replace them by ZIP instructions and classical load/store.
///
/// For example:
///    st2 {v0.4s, v1.4s}, addr
///
/// Is rewritten into:
///    zip1 v2.4s, v0.4s, v1.4s
///    zip2 v3.4s, v0.4s, v1.4s
///    stp  q2, q3, addr
//
/// For example:
///    st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
///
/// Is rewritten into:
///    zip1 v4.4s, v0.4s, v2.4s
///    zip2 v5.4s, v0.4s, v2.4s
///    zip1 v6.4s, v1.4s, v3.4s
///    zip2 v7.4s, v1.4s, v3.4s
///    zip1 v8.4s, v4.4s, v6.4s
///    zip2 v9.4s, v4.4s, v6.4s
///    zip1 v10.4s, v5.4s, v7.4s
///    zip2 v11.4s, v5.4s, v7.4s
///    stp  q8, q9, addr
///    stp  q10, q11, addr+32
///
/// Currently only instructions related to ST2 and ST4 are considered.
/// Other may be added later.
/// Return true if the SIMD instruction is modified.
bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
  unsigned SeqReg, AddrReg;
  unsigned StReg[4], StRegKill[4];
  MachineInstr *DefiningMI;
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock &MBB = *MI.getParent();
  SmallVector<unsigned, MaxNumRepl> ZipDest;
  SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
  // If current instruction matches any of the rewriting rules, then
  // gather information about parameters of the new instructions.
  bool Match = false;
  for (auto &I : IRT) {
    if (MI.getOpcode() == I.OrigOpc) {
      SeqReg  = MI.getOperand(0).getReg();
      AddrReg = MI.getOperand(1).getReg();
      DefiningMI = MRI->getUniqueVRegDef(SeqReg);
      unsigned NumReg = determineSrcReg(MI);
      if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
        return false;
      for (auto &Repl : I.ReplOpc) {
        ReplInstrMCID.push_back(&TII->get(Repl));
        // Generate destination registers but only for non-store instruction.
        if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
          ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
      }
      Match = true;
      break;
    }
  }
  if (!Match)
    return false;
  // Determine if it is profitable to replace MI by the series of instructions
  // represented in ReplInstrMCID.
  if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
                         ReplInstrMCID))
    return false;
  // Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
  // this point, the code generation is hardcoded and does not rely on the IRT
  // table used above given that code generation for ST2 replacement is somewhat
  // different than for ST4 replacement. We could have added more info into the
  // table related to how we build new instructions but we may be adding more
  // complexity with that).
  switch (MI.getOpcode()) {
  default:
    return false;
  case AArch64::ST2Twov16b:
  case AArch64::ST2Twov8b:
  case AArch64::ST2Twov8h:
  case AArch64::ST2Twov4h:
  case AArch64::ST2Twov4s:
  case AArch64::ST2Twov2s:
  case AArch64::ST2Twov2d:
    // ZIP instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
        .addReg(StReg[0])
        .addReg(StReg[1]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
        .addReg(StReg[0], StRegKill[0])
        .addReg(StReg[1], StRegKill[1]);
    // STP instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
        .addReg(ZipDest[0])
        .addReg(ZipDest[1])
        .addReg(AddrReg)
        .addImm(0);
    break;
  case AArch64::ST4Fourv16b:
  case AArch64::ST4Fourv8b:
  case AArch64::ST4Fourv8h:
  case AArch64::ST4Fourv4h:
  case AArch64::ST4Fourv4s:
  case AArch64::ST4Fourv2s:
  case AArch64::ST4Fourv2d:
    // ZIP instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
        .addReg(StReg[0])
        .addReg(StReg[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
        .addReg(StReg[0], StRegKill[0])
        .addReg(StReg[2], StRegKill[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
        .addReg(StReg[1])
        .addReg(StReg[3]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
        .addReg(StReg[1], StRegKill[1])
        .addReg(StReg[3], StRegKill[3]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
        .addReg(ZipDest[0])
        .addReg(ZipDest[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
        .addReg(ZipDest[0])
        .addReg(ZipDest[2]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
        .addReg(ZipDest[1])
        .addReg(ZipDest[3]);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
        .addReg(ZipDest[1])
        .addReg(ZipDest[3]);
    // stp instructions
    BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
        .addReg(ZipDest[4])
        .addReg(ZipDest[5])
        .addReg(AddrReg)
        .addImm(0);
    BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
        .addReg(ZipDest[6])
        .addReg(ZipDest[7])
        .addReg(AddrReg)
        .addImm(2);
    break;
  }
  ++NumModifiedInstr;
  return true;
}
/// Process The REG_SEQUENCE instruction, and extract the source
/// operands of the ST2/4 instruction from it.
/// Example of such instruction.
///    %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
/// Return true when the instruction is processed successfully.
bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
     unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
  assert (DefiningMI != NULL);
  if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
    return false;
  for (unsigned i=0; i<NumArg; i++) {
    StReg[i]     = DefiningMI->getOperand(2*i+1).getReg();
    StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
    // Sanity check for the other arguments.
    if (DefiningMI->getOperand(2*i+2).isImm()) {
      switch (DefiningMI->getOperand(2*i+2).getImm()) {
      default:
        return false;
      case AArch64::dsub0:
      case AArch64::dsub1:
      case AArch64::dsub2:
      case AArch64::dsub3:
      case AArch64::qsub0:
      case AArch64::qsub1:
      case AArch64::qsub2:
      case AArch64::qsub3:
        break;
      }
    }
    else
      return false;
  }
  return true;
}
/// Return the number of useful source registers for this instruction
/// (2 for ST2 and 4 for ST4).
unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("Unsupported instruction for this pass");
  case AArch64::ST2Twov16b:
  case AArch64::ST2Twov8b:
  case AArch64::ST2Twov8h:
  case AArch64::ST2Twov4h:
  case AArch64::ST2Twov4s:
  case AArch64::ST2Twov2s:
  case AArch64::ST2Twov2d:
    return 2;
  case AArch64::ST4Fourv16b:
  case AArch64::ST4Fourv8b:
  case AArch64::ST4Fourv8h:
  case AArch64::ST4Fourv4h:
  case AArch64::ST4Fourv4s:
  case AArch64::ST4Fourv2s:
  case AArch64::ST4Fourv2d:
    return 4;
  }
}
bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  TII = MF.getSubtarget().getInstrInfo();
  MRI = &MF.getRegInfo();
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  const AArch64InstrInfo *AAII =
      static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
  if (!AAII)
    return false;
  SchedModel.init(ST.getSchedModel(), &ST, AAII);
  if (!SchedModel.hasInstrSchedModel())
    return false;
  bool Changed = false;
  for (auto OptimizationKind : {VectorElem, Interleave}) {
    if (!shouldExitEarly(&MF, OptimizationKind)) {
      SmallVector<MachineInstr *, 8> RemoveMIs;
      for (MachineBasicBlock &MBB : MF) {
        for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
             MII != MIE;) {
          MachineInstr &MI = *MII;
          bool InstRewrite;
          if (OptimizationKind == VectorElem)
            InstRewrite = optimizeVectElement(MI) ;
          else
            InstRewrite = optimizeLdStInterleave(MI);
          if (InstRewrite) {
            // Add MI to the list of instructions to be removed given that it
            // has been replaced.
            RemoveMIs.push_back(&MI);
            Changed = true;
          }
          ++MII;
        }
      }
      for (MachineInstr *MI : RemoveMIs)
        MI->eraseFromParent();
    }
  }
  return Changed;
}
/// Returns an instance of the high cost ASIMD instruction replacement
/// optimization pass.
FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
  return new AArch64SIMDInstrOpt();
}
 |