| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 
 | //===- HexagonBlockRanges.h -------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONBLOCKRANGES_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONBLOCKRANGES_H
#include "llvm/ADT/BitVector.h"
#include <cassert>
#include <map>
#include <set>
#include <utility>
#include <vector>
namespace llvm {
class HexagonSubtarget;
class MachineBasicBlock;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class raw_ostream;
class TargetInstrInfo;
class TargetRegisterInfo;
struct HexagonBlockRanges {
  HexagonBlockRanges(MachineFunction &MF);
  struct RegisterRef {
    unsigned Reg, Sub;
    bool operator<(RegisterRef R) const {
      return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
    }
  };
  using RegisterSet = std::set<RegisterRef>;
  // This is to represent an "index", which is an abstraction of a position
  // of an instruction within a basic block.
  class IndexType {
  public:
    enum : unsigned {
      None  = 0,
      Entry = 1,
      Exit  = 2,
      First = 11  // 10th + 1st
    };
    IndexType() {}
    IndexType(unsigned Idx) : Index(Idx) {}
    static bool isInstr(IndexType X) { return X.Index >= First; }
    operator unsigned() const;
    bool operator== (unsigned x) const;
    bool operator== (IndexType Idx) const;
    bool operator!= (unsigned x) const;
    bool operator!= (IndexType Idx) const;
    IndexType operator++ ();
    bool operator< (unsigned Idx) const;
    bool operator< (IndexType Idx) const;
    bool operator<= (IndexType Idx) const;
  private:
    bool operator>  (IndexType Idx) const;
    bool operator>= (IndexType Idx) const;
    unsigned Index = None;
  };
  // A range of indices, essentially a representation of a live range.
  // This is also used to represent "dead ranges", i.e. ranges where a
  // register is dead.
  class IndexRange : public std::pair<IndexType,IndexType> {
  public:
    IndexRange() = default;
    IndexRange(IndexType Start, IndexType End, bool F = false, bool T = false)
      : std::pair<IndexType,IndexType>(Start, End), Fixed(F), TiedEnd(T) {}
    IndexType start() const { return first; }
    IndexType end() const   { return second; }
    bool operator< (const IndexRange &A) const {
      return start() < A.start();
    }
    bool overlaps(const IndexRange &A) const;
    bool contains(const IndexRange &A) const;
    void merge(const IndexRange &A);
    bool Fixed = false;   // Can be renamed?  "Fixed" means "no".
    bool TiedEnd = false; // The end is not a use, but a dead def tied to a use.
  private:
    void setStart(const IndexType &S) { first = S; }
    void setEnd(const IndexType &E)   { second = E; }
  };
  // A list of index ranges. This represents liveness of a register
  // in a basic block.
  class RangeList : public std::vector<IndexRange> {
  public:
    void add(IndexType Start, IndexType End, bool Fixed, bool TiedEnd) {
      push_back(IndexRange(Start, End, Fixed, TiedEnd));
    }
    void add(const IndexRange &Range) {
      push_back(Range);
    }
    void include(const RangeList &RL);
    void unionize(bool MergeAdjacent = false);
    void subtract(const IndexRange &Range);
  private:
    void addsub(const IndexRange &A, const IndexRange &B);
  };
  class InstrIndexMap {
  public:
    InstrIndexMap(MachineBasicBlock &B);
    MachineInstr *getInstr(IndexType Idx) const;
    IndexType getIndex(MachineInstr *MI) const;
    MachineBasicBlock &getBlock() const { return Block; }
    IndexType getPrevIndex(IndexType Idx) const;
    IndexType getNextIndex(IndexType Idx) const;
    void replaceInstr(MachineInstr *OldMI, MachineInstr *NewMI);
    friend raw_ostream &operator<< (raw_ostream &OS, const InstrIndexMap &Map);
    IndexType First, Last;
  private:
    MachineBasicBlock &Block;
    std::map<IndexType,MachineInstr*> Map;
  };
  using RegToRangeMap = std::map<RegisterRef, RangeList>;
  RegToRangeMap computeLiveMap(InstrIndexMap &IndexMap);
  RegToRangeMap computeDeadMap(InstrIndexMap &IndexMap, RegToRangeMap &LiveMap);
  static RegisterSet expandToSubRegs(RegisterRef R,
      const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI);
  struct PrintRangeMap {
    PrintRangeMap(const RegToRangeMap &M, const TargetRegisterInfo &I)
        : Map(M), TRI(I) {}
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintRangeMap &P);
  private:
    const RegToRangeMap ⤅
    const TargetRegisterInfo &TRI;
  };
private:
  RegisterSet getLiveIns(const MachineBasicBlock &B,
      const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI);
  void computeInitialLiveRanges(InstrIndexMap &IndexMap,
      RegToRangeMap &LiveMap);
  MachineFunction &MF;
  const HexagonSubtarget &HST;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  BitVector Reserved;
};
inline HexagonBlockRanges::IndexType::operator unsigned() const {
  assert(Index >= First);
  return Index;
}
inline bool HexagonBlockRanges::IndexType::operator== (unsigned x) const {
  return Index == x;
}
inline bool HexagonBlockRanges::IndexType::operator== (IndexType Idx) const {
  return Index == Idx.Index;
}
inline bool HexagonBlockRanges::IndexType::operator!= (unsigned x) const {
  return Index != x;
}
inline bool HexagonBlockRanges::IndexType::operator!= (IndexType Idx) const {
  return Index != Idx.Index;
}
inline
HexagonBlockRanges::IndexType HexagonBlockRanges::IndexType::operator++ () {
  assert(Index != None);
  assert(Index != Exit);
  if (Index == Entry)
    Index = First;
  else
    ++Index;
  return *this;
}
inline bool HexagonBlockRanges::IndexType::operator< (unsigned Idx) const {
  return operator< (IndexType(Idx));
}
inline bool HexagonBlockRanges::IndexType::operator< (IndexType Idx) const {
  // !(x < x).
  if (Index == Idx.Index)
    return false;
  // !(None < x) for all x.
  // !(x < None) for all x.
  if (Index == None || Idx.Index == None)
    return false;
  // !(Exit < x) for all x.
  // !(x < Entry) for all x.
  if (Index == Exit || Idx.Index == Entry)
    return false;
  // Entry < x for all x != Entry.
  // x < Exit for all x != Exit.
  if (Index == Entry || Idx.Index == Exit)
    return true;
  return Index < Idx.Index;
}
inline bool HexagonBlockRanges::IndexType::operator<= (IndexType Idx) const {
  return operator==(Idx) || operator<(Idx);
}
raw_ostream &operator<< (raw_ostream &OS, HexagonBlockRanges::IndexType Idx);
raw_ostream &operator<< (raw_ostream &OS,
      const HexagonBlockRanges::IndexRange &IR);
raw_ostream &operator<< (raw_ostream &OS,
      const HexagonBlockRanges::RangeList &RL);
raw_ostream &operator<< (raw_ostream &OS,
      const HexagonBlockRanges::InstrIndexMap &M);
raw_ostream &operator<< (raw_ostream &OS,
      const HexagonBlockRanges::PrintRangeMap &P);
} // end namespace llvm
#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONBLOCKRANGES_H
 |