1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
|
//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "HexagonISelLowering.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
using namespace llvm;
SDValue
HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
const SDLoc &dl, SelectionDAG &DAG) const {
SmallVector<SDValue,4> IntOps;
IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
for (const SDValue &Op : Ops)
IntOps.push_back(Op);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
}
MVT
HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
MVT ElemTy = Tys.first.getVectorElementType();
return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
Tys.second.getVectorNumElements());
}
HexagonTargetLowering::TypePair
HexagonTargetLowering::typeSplit(MVT VecTy) const {
assert(VecTy.isVector());
unsigned NumElem = VecTy.getVectorNumElements();
assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
return { HalfTy, HalfTy };
}
MVT
HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
MVT ElemTy = VecTy.getVectorElementType();
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}
MVT
HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
MVT ElemTy = VecTy.getVectorElementType();
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}
SDValue
HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
SelectionDAG &DAG) const {
if (ty(Vec).getVectorElementType() == ElemTy)
return Vec;
MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
return DAG.getBitcast(CastTy, Vec);
}
SDValue
HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
SelectionDAG &DAG) const {
return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
Ops.second, Ops.first);
}
HexagonTargetLowering::VectorPair
HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
SelectionDAG &DAG) const {
TypePair Tys = typeSplit(ty(Vec));
return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
}
SDValue
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
SelectionDAG &DAG) const {
if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
unsigned ElemWidth = ElemTy.getSizeInBits();
if (ElemWidth == 8)
return ElemIdx;
unsigned L = Log2_32(ElemWidth/8);
const SDLoc &dl(ElemIdx);
return DAG.getNode(ISD::SHL, dl, MVT::i32,
{ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
}
SDValue
HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
SelectionDAG &DAG) const {
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
if (ElemWidth == 32)
return Idx;
if (ty(Idx) != MVT::i32)
Idx = DAG.getBitcast(MVT::i32, Idx);
const SDLoc &dl(Idx);
SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
return SubIdx;
}
SDValue
HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
SDValue Op1, ArrayRef<int> Mask,
SelectionDAG &DAG) const {
MVT OpTy = ty(Op0);
assert(OpTy == ty(Op1));
MVT ElemTy = OpTy.getVectorElementType();
if (ElemTy == MVT::i8)
return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
assert(ElemTy.getSizeInBits() >= 8);
MVT ResTy = tyVector(OpTy, MVT::i8);
unsigned ElemSize = ElemTy.getSizeInBits() / 8;
SmallVector<int,128> ByteMask;
for (int M : Mask) {
if (M < 0) {
for (unsigned I = 0; I != ElemSize; ++I)
ByteMask.push_back(-1);
} else {
int NewM = M*ElemSize;
for (unsigned I = 0; I != ElemSize; ++I)
ByteMask.push_back(NewM+I);
}
}
assert(ResTy.getVectorNumElements() == ByteMask.size());
return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
opCastElem(Op1, MVT::i8, DAG), ByteMask);
}
MVT
HexagonTargetLowering::getVecBoolVT() const {
return MVT::getVectorVT(MVT::i1, 8*Subtarget.getVectorLength());
}
SDValue
HexagonTargetLowering::buildHvxVectorSingle(ArrayRef<SDValue> Values,
const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const {
unsigned VecLen = Values.size();
MachineFunction &MF = DAG.getMachineFunction();
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
unsigned HwLen = Subtarget.getVectorLength();
SmallVector<ConstantInt*, 128> Consts(VecLen);
bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
if (AllConst) {
if (llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
return getZero(dl, VecTy, DAG);
ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
(Constant**)Consts.end());
Constant *CV = ConstantVector::get(Tmp);
unsigned Align = HwLen;
SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG);
return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(MF), Align);
}
unsigned ElemSize = ElemWidth / 8;
assert(ElemSize*VecLen == HwLen);
SmallVector<SDValue,32> Words;
if (VecTy.getVectorElementType() != MVT::i32) {
assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
Words.push_back(DAG.getBitcast(MVT::i32, W));
}
} else {
Words.assign(Values.begin(), Values.end());
}
// Construct two halves in parallel, then or them together.
assert(4*Words.size() == Subtarget.getVectorLength());
SDValue HalfV0 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
SDValue HalfV1 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
SDValue S = DAG.getConstant(4, dl, MVT::i32);
unsigned NumWords = Words.size();
for (unsigned i = 0; i != NumWords/2; ++i) {
SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
{HalfV0, Words[i]});
SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
{HalfV1, Words[i+NumWords/2]});
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
}
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
{HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
return DstV;
}
SDValue
HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const {
// Construct a vector V of bytes, such that a comparison V >u 0 would
// produce the required vector predicate.
unsigned VecLen = Values.size();
unsigned HwLen = Subtarget.getVectorLength();
assert(VecLen <= HwLen || VecLen == 8*HwLen);
SmallVector<SDValue,128> Bytes;
if (VecLen <= HwLen) {
// In the hardware, each bit of a vector predicate corresponds to a byte
// of a vector register. Calculate how many bytes does a bit of VecTy
// correspond to.
assert(HwLen % VecLen == 0);
unsigned BitBytes = HwLen / VecLen;
for (SDValue V : Values) {
SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
: DAG.getConstant(0, dl, MVT::i8);
for (unsigned B = 0; B != BitBytes; ++B)
Bytes.push_back(Ext);
}
} else {
// There are as many i1 values, as there are bits in a vector register.
// Divide the values into groups of 8 and check that each group consists
// of the same value (ignoring undefs).
for (unsigned I = 0; I != VecLen; I += 8) {
unsigned B = 0;
// Find the first non-undef value in this group.
for (; B != 8; ++B) {
if (!Values[I+B].isUndef())
break;
}
SDValue F = Values[I+B];
SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
: DAG.getConstant(0, dl, MVT::i8);
Bytes.push_back(Ext);
// Verify that the rest of values in the group are the same as the
// first.
for (; B != 8; ++B)
assert(Values[I+B].isUndef() || Values[I+B] == F);
}
}
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = buildHvxVectorSingle(Bytes, dl, ByteTy, DAG);
SDValue Cmp = DAG.getSetCC(dl, VecTy, ByteVec, getZero(dl, ByteTy, DAG),
ISD::SETUGT);
return Cmp;
}
SDValue
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
MVT VecTy = ty(Op);
unsigned Size = Op.getNumOperands();
SmallVector<SDValue,128> Ops;
for (unsigned i = 0; i != Size; ++i)
Ops.push_back(Op.getOperand(i));
if (VecTy.getVectorElementType() == MVT::i1)
return buildHvxVectorPred(Ops, dl, VecTy, DAG);
if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
ArrayRef<SDValue> A(Ops);
MVT SingleTy = typeSplit(VecTy).first;
SDValue V0 = buildHvxVectorSingle(A.take_front(Size/2), dl, SingleTy, DAG);
SDValue V1 = buildHvxVectorSingle(A.drop_front(Size/2), dl, SingleTy, DAG);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
}
return buildHvxVectorSingle(Ops, dl, VecTy, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
const {
// Change the type of the extracted element to i32.
SDValue VecV = Op.getOperand(0);
MVT ElemTy = ty(VecV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
(void)ElemWidth;
const SDLoc &dl(Op);
SDValue IdxV = Op.getOperand(1);
if (ty(IdxV) != MVT::i32)
IdxV = DAG.getBitcast(MVT::i32, IdxV);
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
{VecV, ByteIdx});
if (ElemTy == MVT::i32)
return ExWord;
// Have an extracted word, need to extract the smaller element out of it.
// 1. Extract the bits of (the original) IdxV that correspond to the index
// of the desired element in the 32-bit word.
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
// 2. Extract the element from the word.
SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
SDValue VecV = Op.getOperand(0);
SDValue ValV = Op.getOperand(1);
SDValue IdxV = Op.getOperand(2);
MVT ElemTy = ty(VecV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
(void)ElemWidth;
auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
SDValue ByteIdxV) {
MVT VecTy = ty(VecV);
unsigned HwLen = Subtarget.getVectorLength();
SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
{ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
{DAG.getConstant(HwLen/4, dl, MVT::i32), MaskV});
SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
return TorV;
};
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
if (ElemTy == MVT::i32)
return InsertWord(VecV, ValV, ByteIdx);
// If this is not inserting a 32-bit word, convert it into such a thing.
// 1. Extract the existing word from the target vector.
SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
{ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
SDValue Ex0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
{opCastElem(VecV, MVT::i32, DAG), WordIdx});
SDValue Ext = LowerHvxExtractElement(Ex0, DAG);
// 2. Treating the extracted word as a 32-bit vector, insert the given
// value into it.
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
MVT SubVecTy = tyVector(ty(Ext), ElemTy);
SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
ValV, SubIdx, dl, ElemTy, DAG);
// 3. Insert the 32-bit word back into the original vector.
return InsertWord(VecV, Ins, ByteIdx);
}
SDValue
HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
const {
SDValue SrcV = Op.getOperand(0);
MVT SrcTy = ty(SrcV);
unsigned SrcElems = SrcTy.getVectorNumElements();
SDValue IdxV = Op.getOperand(1);
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
MVT DstTy = ty(Op);
assert(Idx == 0 || DstTy.getVectorNumElements() % Idx == 0);
const SDLoc &dl(Op);
if (Idx == 0)
return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, DstTy, SrcV);
if (Idx == SrcElems/2)
return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, DstTy, SrcV);
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
const {
// Idx may be variable.
SDValue IdxV = Op.getOperand(2);
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
if (!IdxN)
return SDValue();
unsigned Idx = IdxN->getZExtValue();
SDValue DstV = Op.getOperand(0);
SDValue SrcV = Op.getOperand(1);
MVT DstTy = ty(DstV);
MVT SrcTy = ty(SrcV);
unsigned DstElems = DstTy.getVectorNumElements();
unsigned SrcElems = SrcTy.getVectorNumElements();
if (2*SrcElems != DstElems)
return SDValue();
const SDLoc &dl(Op);
if (Idx == 0)
return DAG.getTargetInsertSubreg(Hexagon::vsub_lo, dl, DstTy, DstV, SrcV);
if (Idx == SrcElems)
return DAG.getTargetInsertSubreg(Hexagon::vsub_hi, dl, DstTy, DstV, SrcV);
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
if (!ResTy.isVector())
return SDValue();
const SDLoc &dl(Op);
SmallVector<int,256> ShuffMask;
MVT ElemTy = ResTy.getVectorElementType();
unsigned VecLen = ResTy.getVectorNumElements();
SDValue Vs = Op.getOperand(0);
SDValue Vt = Op.getOperand(1);
switch (ElemTy.SimpleTy) {
case MVT::i8:
case MVT::i16: {
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
// For i16, use V6_vmpyhv, which behaves in an analogous way to
// V6_vmpybv: results Lo and Hi are products of even/odd elements
// respectively.
MVT ExtTy = typeExtElem(ResTy, 2);
unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
: Hexagon::V6_vmpyhv;
SDValue M = getNode(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
// Discard high halves of the resulting values, collect the low halves.
for (unsigned I = 0; I < VecLen; I += 2) {
ShuffMask.push_back(I); // Pick even element.
ShuffMask.push_back(I+VecLen); // Pick odd element.
}
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
return getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
}
case MVT::i32: {
// Use the following sequence for signed word multiply:
// T0 = V6_vmpyiowh Vs, Vt
// T1 = V6_vaslw T0, 16
// T2 = V6_vmpyiewuh_acc T1, Vs, Vt
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
SDValue T0 = getNode(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
SDValue T1 = getNode(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
SDValue T2 = getNode(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
{T1, Vs, Vt}, DAG);
return T2;
}
default:
break;
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
MVT VecTy = ty(Op.getOperand(0));
assert(VecTy == ty(Op.getOperand(1)));
SDValue Cmp = Op.getOperand(2);
ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
bool Negate = false, Swap = false;
// HVX has instructions for SETEQ, SETGT, SETUGT. The other comparisons
// can be arranged as operand-swapped/negated versions of these. Since
// the generated code will have the original CC expressed as
// (negate (swap-op NewCmp)),
// the condition code for the NewCmp should be calculated from the original
// CC by applying these operations in the reverse order.
//
// This could also be done through setCondCodeAction, but for negation it
// uses a xor with a vector of -1s, which it obtains from BUILD_VECTOR.
// That is far too expensive for what can be done with a single instruction.
switch (CC) {
case ISD::SETNE: // !eq
case ISD::SETLE: // !gt
case ISD::SETGE: // !lt
case ISD::SETULE: // !ugt
case ISD::SETUGE: // !ult
CC = ISD::getSetCCInverse(CC, true);
Negate = true;
break;
default:
break;
}
switch (CC) {
case ISD::SETLT: // swap gt
case ISD::SETULT: // swap ugt
CC = ISD::getSetCCSwappedOperands(CC);
Swap = true;
break;
default:
break;
}
assert(CC == ISD::SETEQ || CC == ISD::SETGT || CC == ISD::SETUGT);
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(isPowerOf2_32(ElemWidth));
auto getIdx = [] (unsigned Code) {
static const unsigned Idx[] = { ISD::SETEQ, ISD::SETGT, ISD::SETUGT };
for (unsigned I = 0, E = array_lengthof(Idx); I != E; ++I)
if (Code == Idx[I])
return I;
llvm_unreachable("Unhandled CondCode");
};
static unsigned OpcTable[3][3] = {
// SETEQ SETGT, SETUGT
/* Byte */ { Hexagon::V6_veqb, Hexagon::V6_vgtb, Hexagon::V6_vgtub },
/* Half */ { Hexagon::V6_veqh, Hexagon::V6_vgth, Hexagon::V6_vgtuh },
/* Word */ { Hexagon::V6_veqw, Hexagon::V6_vgtw, Hexagon::V6_vgtuw }
};
unsigned CmpOpc = OpcTable[Log2_32(ElemWidth)-3][getIdx(CC)];
MVT ResTy = ty(Op);
const SDLoc &dl(Op);
SDValue OpL = Swap ? Op.getOperand(1) : Op.getOperand(0);
SDValue OpR = Swap ? Op.getOperand(0) : Op.getOperand(1);
SDValue CmpV = getNode(CmpOpc, dl, ResTy, {OpL, OpR}, DAG);
return Negate ? getNode(Hexagon::V6_pred_not, dl, ResTy, {CmpV}, DAG)
: CmpV;
}
SDValue
HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
// Sign- and zero-extends are legal.
assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
return DAG.getZeroExtendVectorInReg(Op.getOperand(0), SDLoc(Op), ty(Op));
}
|