| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 
 | //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that RISCV uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "RISCVISelLowering.h"
#include "RISCV.h"
#include "RISCVRegisterInfo.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-lower"
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
                                         const RISCVSubtarget &STI)
    : TargetLowering(TM), Subtarget(STI) {
  MVT XLenVT = Subtarget.getXLenVT();
  // Set up the register classes.
  addRegisterClass(XLenVT, &RISCV::GPRRegClass);
  // Compute derived properties from the register classes.
  computeRegisterProperties(STI.getRegisterInfo());
  setStackPointerRegisterToSaveRestore(RISCV::X2);
  for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
    setLoadExtAction(N, XLenVT, MVT::i1, Promote);
  // TODO: add all necessary setOperationAction calls.
  setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
  setOperationAction(ISD::BR_CC, XLenVT, Expand);
  setOperationAction(ISD::SELECT, XLenVT, Custom);
  setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
  for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
    setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
  setOperationAction(ISD::ADDC, XLenVT, Expand);
  setOperationAction(ISD::ADDE, XLenVT, Expand);
  setOperationAction(ISD::SUBC, XLenVT, Expand);
  setOperationAction(ISD::SUBE, XLenVT, Expand);
  setOperationAction(ISD::SREM, XLenVT, Expand);
  setOperationAction(ISD::SDIVREM, XLenVT, Expand);
  setOperationAction(ISD::SDIV, XLenVT, Expand);
  setOperationAction(ISD::UREM, XLenVT, Expand);
  setOperationAction(ISD::UDIVREM, XLenVT, Expand);
  setOperationAction(ISD::UDIV, XLenVT, Expand);
  setOperationAction(ISD::MUL, XLenVT, Expand);
  setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
  setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
  setOperationAction(ISD::MULHS, XLenVT, Expand);
  setOperationAction(ISD::MULHU, XLenVT, Expand);
  setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
  setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
  setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
  setOperationAction(ISD::ROTL, XLenVT, Expand);
  setOperationAction(ISD::ROTR, XLenVT, Expand);
  setOperationAction(ISD::BSWAP, XLenVT, Expand);
  setOperationAction(ISD::CTTZ, XLenVT, Expand);
  setOperationAction(ISD::CTLZ, XLenVT, Expand);
  setOperationAction(ISD::CTPOP, XLenVT, Expand);
  setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
  setOperationAction(ISD::BlockAddress, XLenVT, Custom);
  setBooleanContents(ZeroOrOneBooleanContent);
  // Function alignments (log2).
  setMinFunctionAlignment(3);
  setPrefFunctionAlignment(3);
  // Effectively disable jump table generation.
  setMinimumJumpTableEntries(INT_MAX);
}
// Changes the condition code and swaps operands if necessary, so the SetCC
// operation matches one of the comparisons supported directly in the RISC-V
// ISA.
static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
  switch (CC) {
  default:
    break;
  case ISD::SETGT:
  case ISD::SETLE:
  case ISD::SETUGT:
  case ISD::SETULE:
    CC = ISD::getSetCCSwappedOperands(CC);
    std::swap(LHS, RHS);
    break;
  }
}
// Return the RISC-V branch opcode that matches the given DAG integer
// condition code. The CondCode must be one of those supported by the RISC-V
// ISA (see normaliseSetCC).
static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
  switch (CC) {
  default:
    llvm_unreachable("Unsupported CondCode");
  case ISD::SETEQ:
    return RISCV::BEQ;
  case ISD::SETNE:
    return RISCV::BNE;
  case ISD::SETLT:
    return RISCV::BLT;
  case ISD::SETGE:
    return RISCV::BGE;
  case ISD::SETULT:
    return RISCV::BLTU;
  case ISD::SETUGE:
    return RISCV::BGEU;
  }
}
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
                                            SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  default:
    report_fatal_error("unimplemented operand");
  case ISD::GlobalAddress:
    return lowerGlobalAddress(Op, DAG);
  case ISD::BlockAddress:
    return lowerBlockAddress(Op, DAG);
  case ISD::SELECT:
    return lowerSELECT(Op, DAG);
  }
}
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT Ty = Op.getValueType();
  GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
  const GlobalValue *GV = N->getGlobal();
  int64_t Offset = N->getOffset();
  if (isPositionIndependent() || Subtarget.is64Bit())
    report_fatal_error("Unable to lowerGlobalAddress");
  SDValue GAHi =
    DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_HI);
  SDValue GALo =
    DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_LO);
  SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
  SDValue MNLo =
    SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
  return MNLo;
}
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
                                               SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT Ty = Op.getValueType();
  BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
  const BlockAddress *BA = N->getBlockAddress();
  int64_t Offset = N->getOffset();
  if (isPositionIndependent() || Subtarget.is64Bit())
    report_fatal_error("Unable to lowerBlockAddress");
  SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
  SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
  SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
  SDValue MNLo =
    SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
  return MNLo;
}
SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
                                                 SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT Ty = Op.getValueType();
  ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
  const char *Sym = N->getSymbol();
  // TODO: should also handle gp-relative loads.
  if (isPositionIndependent() || Subtarget.is64Bit())
    report_fatal_error("Unable to lowerExternalSymbol");
  SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
  SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
  SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
  SDValue MNLo =
    SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
  return MNLo;
}
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
  SDValue CondV = Op.getOperand(0);
  SDValue TrueV = Op.getOperand(1);
  SDValue FalseV = Op.getOperand(2);
  SDLoc DL(Op);
  MVT XLenVT = Subtarget.getXLenVT();
  // If the result type is XLenVT and CondV is the output of a SETCC node
  // which also operated on XLenVT inputs, then merge the SETCC node into the
  // lowered RISCVISD::SELECT_CC to take advantage of the integer
  // compare+branch instructions. i.e.:
  // (select (setcc lhs, rhs, cc), truev, falsev)
  // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
  if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
      CondV.getOperand(0).getSimpleValueType() == XLenVT) {
    SDValue LHS = CondV.getOperand(0);
    SDValue RHS = CondV.getOperand(1);
    auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
    ISD::CondCode CCVal = CC->get();
    normaliseSetCC(LHS, RHS, CCVal);
    SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
    return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
  }
  // Otherwise:
  // (select condv, truev, falsev)
  // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
  SDValue Zero = DAG.getConstant(0, DL, XLenVT);
  SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
  SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
  return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
}
MachineBasicBlock *
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                                 MachineBasicBlock *BB) const {
  const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  assert(MI.getOpcode() == RISCV::Select_GPR_Using_CC_GPR &&
         "Unexpected instr type to insert");
  // To "insert" a SELECT instruction, we actually have to insert the triangle
  // control-flow pattern.  The incoming instruction knows the destination vreg
  // to set, the condition code register to branch on, the true/false values to
  // select between, and the condcode to use to select the appropriate branch.
  //
  // We produce the following control flow:
  //     HeadMBB
  //     |  \
  //     |  IfFalseMBB
  //     | /
  //    TailMBB
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator I = ++BB->getIterator();
  MachineBasicBlock *HeadMBB = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
  F->insert(I, IfFalseMBB);
  F->insert(I, TailMBB);
  // Move all remaining instructions to TailMBB.
  TailMBB->splice(TailMBB->begin(), HeadMBB,
                  std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
  // Update machine-CFG edges by transferring all successors of the current
  // block to the new block which will contain the Phi node for the select.
  TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
  // Set the successors for HeadMBB.
  HeadMBB->addSuccessor(IfFalseMBB);
  HeadMBB->addSuccessor(TailMBB);
  // Insert appropriate branch.
  unsigned LHS = MI.getOperand(1).getReg();
  unsigned RHS = MI.getOperand(2).getReg();
  auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
  unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
  BuildMI(HeadMBB, DL, TII.get(Opcode))
    .addReg(LHS)
    .addReg(RHS)
    .addMBB(TailMBB);
  // IfFalseMBB just falls through to TailMBB.
  IfFalseMBB->addSuccessor(TailMBB);
  // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
  BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
          MI.getOperand(0).getReg())
      .addReg(MI.getOperand(4).getReg())
      .addMBB(HeadMBB)
      .addReg(MI.getOperand(5).getReg())
      .addMBB(IfFalseMBB);
  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return TailMBB;
}
// Calling Convention Implementation.
// The expectations for frontend ABI lowering vary from target to target.
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
// details, but this is a longer term goal. For now, we simply try to keep the
// role of the frontend as simple and well-defined as possible. The rules can
// be summarised as:
// * Never split up large scalar arguments. We handle them here.
// * If a hardfloat calling convention is being used, and the struct may be
// passed in a pair of registers (fp+fp, int+fp), and both registers are
// available, then pass as two separate arguments. If either the GPRs or FPRs
// are exhausted, then pass according to the rule below.
// * If a struct could never be passed in registers or directly in a stack
// slot (as it is larger than 2*XLEN and the floating point rules don't
// apply), then pass it using a pointer with the byval attribute.
// * If a struct is less than 2*XLEN, then coerce to either a two-element
// word-sized array or a 2*XLEN scalar (depending on alignment).
// * The frontend can determine whether a struct is returned by reference or
// not based on its size and fields. If it will be returned by reference, the
// frontend must modify the prototype so a pointer with the sret annotation is
// passed as the first argument. This is not necessary for large scalar
// returns.
// * Struct return values and varargs should be coerced to structs containing
// register-size fields in the same situations they would be for fixed
// arguments.
static const MCPhysReg ArgGPRs[] = {
  RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
  RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
};
// Pass a 2*XLEN argument that has been split into two XLEN values through
// registers or the stack as necessary.
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
                                ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
                                MVT ValVT2, MVT LocVT2,
                                ISD::ArgFlagsTy ArgFlags2) {
  unsigned XLenInBytes = XLen / 8;
  if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
    // At least one half can be passed via register.
    State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
                                     VA1.getLocVT(), CCValAssign::Full));
  } else {
    // Both halves must be passed on the stack, with proper alignment.
    unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
    State.addLoc(
        CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
                            State.AllocateStack(XLenInBytes, StackAlign),
                            VA1.getLocVT(), CCValAssign::Full));
    State.addLoc(CCValAssign::getMem(
        ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
        CCValAssign::Full));
    return false;
  }
  if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
    // The second half can also be passed via register.
    State.addLoc(
        CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
  } else {
    // The second half is passed via the stack, without additional alignment.
    State.addLoc(CCValAssign::getMem(
        ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
        CCValAssign::Full));
  }
  return false;
}
// Implements the RISC-V calling convention. Returns true upon failure.
static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
                     CCState &State, bool IsFixed, bool IsRet) {
  unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
  assert(XLen == 32 || XLen == 64);
  MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
  assert(ValVT == XLenVT && "Unexpected ValVT");
  assert(LocVT == XLenVT && "Unexpected LocVT");
  assert(IsFixed && "Vararg support not yet implemented");
  // Any return value split in to more than two values can't be returned
  // directly.
  if (IsRet && ValNo > 1)
    return true;
  SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
  SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
      State.getPendingArgFlags();
  assert(PendingLocs.size() == PendingArgFlags.size() &&
         "PendingLocs and PendingArgFlags out of sync");
  // Split arguments might be passed indirectly, so keep track of the pending
  // values.
  if (ArgFlags.isSplit() || !PendingLocs.empty()) {
    LocVT = XLenVT;
    LocInfo = CCValAssign::Indirect;
    PendingLocs.push_back(
        CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
    PendingArgFlags.push_back(ArgFlags);
    if (!ArgFlags.isSplitEnd()) {
      return false;
    }
  }
  // If the split argument only had two elements, it should be passed directly
  // in registers or on the stack.
  if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
    assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
    // Apply the normal calling convention rules to the first half of the
    // split argument.
    CCValAssign VA = PendingLocs[0];
    ISD::ArgFlagsTy AF = PendingArgFlags[0];
    PendingLocs.clear();
    PendingArgFlags.clear();
    return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
                               ArgFlags);
  }
  // Allocate to a register if possible, or else a stack slot.
  unsigned Reg = State.AllocateReg(ArgGPRs);
  unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
  // If we reach this point and PendingLocs is non-empty, we must be at the
  // end of a split argument that must be passed indirectly.
  if (!PendingLocs.empty()) {
    assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
    assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
    for (auto &It : PendingLocs) {
      if (Reg)
        It.convertToReg(Reg);
      else
        It.convertToMem(StackOffset);
      State.addLoc(It);
    }
    PendingLocs.clear();
    PendingArgFlags.clear();
    return false;
  }
  assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
  if (Reg) {
    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
  } else {
    State.addLoc(
        CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
  }
  return false;
}
void RISCVTargetLowering::analyzeInputArgs(
    MachineFunction &MF, CCState &CCInfo,
    const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
  unsigned NumArgs = Ins.size();
  for (unsigned i = 0; i != NumArgs; ++i) {
    MVT ArgVT = Ins[i].VT;
    ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
    if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
                 ArgFlags, CCInfo, /*IsRet=*/true, IsRet)) {
      DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
                   << EVT(ArgVT).getEVTString() << '\n');
      llvm_unreachable(nullptr);
    }
  }
}
void RISCVTargetLowering::analyzeOutputArgs(
    MachineFunction &MF, CCState &CCInfo,
    const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet) const {
  unsigned NumArgs = Outs.size();
  for (unsigned i = 0; i != NumArgs; i++) {
    MVT ArgVT = Outs[i].VT;
    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
    if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
                 ArgFlags, CCInfo, Outs[i].IsFixed, IsRet)) {
      DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
                   << EVT(ArgVT).getEVTString() << "\n");
      llvm_unreachable(nullptr);
    }
  }
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
                                const CCValAssign &VA, const SDLoc &DL) {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
  EVT LocVT = VA.getLocVT();
  SDValue Val;
  unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
  RegInfo.addLiveIn(VA.getLocReg(), VReg);
  Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
  switch (VA.getLocInfo()) {
  default:
    llvm_unreachable("Unexpected CCValAssign::LocInfo");
  case CCValAssign::Full:
  case CCValAssign::Indirect:
    return Val;
  }
}
// The caller is responsible for loading the full value if the argument is
// passed with CCValAssign::Indirect.
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
                                const CCValAssign &VA, const SDLoc &DL) {
  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  EVT LocVT = VA.getLocVT();
  EVT ValVT = VA.getValVT();
  EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
  int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
                                 VA.getLocMemOffset(), /*Immutable=*/true);
  SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
  SDValue Val;
  ISD::LoadExtType ExtType;
  switch (VA.getLocInfo()) {
  default:
    llvm_unreachable("Unexpected CCValAssign::LocInfo");
  case CCValAssign::Full:
  case CCValAssign::Indirect:
    ExtType = ISD::NON_EXTLOAD;
    break;
  }
  Val = DAG.getExtLoad(
      ExtType, DL, LocVT, Chain, FIN,
      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
  return Val;
}
// Transform physical registers into virtual registers.
SDValue RISCVTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  switch (CallConv) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::C:
  case CallingConv::Fast:
    break;
  }
  MachineFunction &MF = DAG.getMachineFunction();
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  if (IsVarArg)
    report_fatal_error("VarArg not supported");
  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
  analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    assert(VA.getLocVT() == Subtarget.getXLenVT() && "Unhandled argument type");
    SDValue ArgValue;
    if (VA.isRegLoc())
      ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
    else
      ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
    if (VA.getLocInfo() == CCValAssign::Indirect) {
      // If the original argument was split and passed by reference (e.g. i128
      // on RV32), we need to load all parts of it here (using the same
      // address).
      InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
                                   MachinePointerInfo()));
      unsigned ArgIndex = Ins[i].OrigArgIndex;
      assert(Ins[i].PartOffset == 0);
      while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
        CCValAssign &PartVA = ArgLocs[i + 1];
        unsigned PartOffset = Ins[i + 1].PartOffset;
        SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
                                      DAG.getIntPtrConstant(PartOffset, DL));
        InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
                                     MachinePointerInfo()));
        ++i;
      }
      continue;
    }
    InVals.push_back(ArgValue);
  }
  return Chain;
}
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
// and output parameter nodes.
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
                                       SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  SDLoc &DL = CLI.DL;
  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  CLI.IsTailCall = false;
  CallingConv::ID CallConv = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
  MVT XLenVT = Subtarget.getXLenVT();
  if (IsVarArg) {
    report_fatal_error("LowerCall with varargs not implemented");
  }
  MachineFunction &MF = DAG.getMachineFunction();
  // Analyze the operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
  analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false);
  // Get a count of how many bytes are to be pushed on the stack.
  unsigned NumBytes = ArgCCInfo.getNextStackOffset();
  // Create local copies for byval args
  SmallVector<SDValue, 8> ByValArgs;
  for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    if (!Flags.isByVal())
      continue;
    SDValue Arg = OutVals[i];
    unsigned Size = Flags.getByValSize();
    unsigned Align = Flags.getByValAlign();
    int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
    SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
    SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
    Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
                          /*IsVolatile=*/false,
                          /*AlwaysInline=*/false,
                          /*isTailCall=*/false, MachinePointerInfo(),
                          MachinePointerInfo());
    ByValArgs.push_back(FIPtr);
  }
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
  // Copy argument values to their designated locations.
  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
  SmallVector<SDValue, 8> MemOpChains;
  SDValue StackPtr;
  for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue ArgValue = OutVals[i];
    ISD::ArgFlagsTy Flags = Outs[i].Flags;
    // Promote the value if needed.
    // For now, only handle fully promoted and indirect arguments.
    switch (VA.getLocInfo()) {
    case CCValAssign::Full:
      break;
    case CCValAssign::Indirect: {
      // Store the argument in a stack slot and pass its address.
      SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
      MemOpChains.push_back(
          DAG.getStore(Chain, DL, ArgValue, SpillSlot,
                       MachinePointerInfo::getFixedStack(MF, FI)));
      // If the original argument was split (e.g. i128), we need
      // to store all parts of it here (and pass just one address).
      unsigned ArgIndex = Outs[i].OrigArgIndex;
      assert(Outs[i].PartOffset == 0);
      while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
        SDValue PartValue = OutVals[i + 1];
        unsigned PartOffset = Outs[i + 1].PartOffset;
        SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
                                      DAG.getIntPtrConstant(PartOffset, DL));
        MemOpChains.push_back(
            DAG.getStore(Chain, DL, PartValue, Address,
                         MachinePointerInfo::getFixedStack(MF, FI)));
        ++i;
      }
      ArgValue = SpillSlot;
      break;
    }
    default:
      llvm_unreachable("Unknown loc info!");
    }
    // Use local copy if it is a byval arg.
    if (Flags.isByVal())
      ArgValue = ByValArgs[j++];
    if (VA.isRegLoc()) {
      // Queue up the argument copies and emit them at the end.
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
    } else {
      assert(VA.isMemLoc() && "Argument not register or memory");
      // Work out the address of the stack slot.
      if (!StackPtr.getNode())
        StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
      SDValue Address =
          DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
                      DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
      // Emit the store.
      MemOpChains.push_back(
          DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
    }
  }
  // Join the stores, which are independent of one another.
  if (!MemOpChains.empty())
    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
  SDValue Glue;
  // Build a sequence of copy-to-reg nodes, chained and glued together.
  for (auto &Reg : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
    Glue = Chain.getValue(1);
  }
  if (isa<GlobalAddressSDNode>(Callee)) {
    Callee = lowerGlobalAddress(Callee, DAG);
  } else if (isa<ExternalSymbolSDNode>(Callee)) {
    Callee = lowerExternalSymbol(Callee, DAG);
  }
  // The first call operand is the chain and the second is the target address.
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);
  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (auto &Reg : RegsToPass)
    Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
  // Add a register mask operand representing the call-preserved registers.
  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
  assert(Mask && "Missing call preserved mask for calling convention");
  Ops.push_back(DAG.getRegisterMask(Mask));
  // Glue the call to the argument copies, if any.
  if (Glue.getNode())
    Ops.push_back(Glue);
  // Emit the call.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
  Glue = Chain.getValue(1);
  // Mark the end of the call, which is glued to the call itself.
  Chain = DAG.getCALLSEQ_END(Chain,
                             DAG.getConstant(NumBytes, DL, PtrVT, true),
                             DAG.getConstant(0, DL, PtrVT, true),
                             Glue, DL);
  Glue = Chain.getValue(1);
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
  analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
  // Copy all of the result registers out of their specified physreg.
  for (auto &VA : RVLocs) {
    // Copy the value out, gluing the copy to the end of the call sequence.
    SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
                                          VA.getLocVT(), Glue);
    Chain = RetValue.getValue(1);
    Glue = RetValue.getValue(2);
    assert(VA.getLocInfo() == CCValAssign::Full && "Unknown loc info!");
    InVals.push_back(RetValue);
  }
  return Chain;
}
bool RISCVTargetLowering::CanLowerReturn(
    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
    const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
  for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
    MVT VT = Outs[i].VT;
    ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
    if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
                 CCInfo, /*IsFixed=*/true, /*IsRet=*/true))
      return false;
  }
  return true;
}
SDValue
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                                 bool IsVarArg,
                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
                                 const SmallVectorImpl<SDValue> &OutVals,
                                 const SDLoc &DL, SelectionDAG &DAG) const {
  if (IsVarArg) {
    report_fatal_error("VarArg not supported");
  }
  // Stores the assignment of the return value to a location.
  SmallVector<CCValAssign, 16> RVLocs;
  // Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
                 *DAG.getContext());
  analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true);
  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);
  // Copy the result values into the output registers.
  for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
    SDValue Val = OutVals[i];
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");
    assert(VA.getLocInfo() == CCValAssign::Full &&
           "Unexpected CCValAssign::LocInfo");
    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
    // Guarantee that all emitted copies are stuck together.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }
  RetOps[0] = Chain; // Update chain.
  // Add the flag if we have it.
  if (Flag.getNode()) {
    RetOps.push_back(Flag);
  }
  return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
}
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((RISCVISD::NodeType)Opcode) {
  case RISCVISD::FIRST_NUMBER:
    break;
  case RISCVISD::RET_FLAG:
    return "RISCVISD::RET_FLAG";
  case RISCVISD::CALL:
    return "RISCVISD::CALL";
  case RISCVISD::SELECT_CC:
    return "RISCVISD::SELECT_CC";
  }
  return nullptr;
}
 |