1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Project includes
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"
// Other libraries and framework includes
#include "lldb/Target/MemoryRegionInfo.h"
// C includes
// C++ includes
#include <map>
using namespace lldb_private;
using namespace minidump;
llvm::Optional<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_buf_sp) {
if (data_buf_sp->GetByteSize() < sizeof(MinidumpHeader)) {
return llvm::None;
}
llvm::ArrayRef<uint8_t> header_data(data_buf_sp->GetBytes(),
sizeof(MinidumpHeader));
const MinidumpHeader *header = MinidumpHeader::Parse(header_data);
if (header == nullptr) {
return llvm::None;
}
lldb::offset_t directory_list_offset = header->stream_directory_rva;
// check if there is enough data for the parsing of the directory list
if ((directory_list_offset +
sizeof(MinidumpDirectory) * header->streams_count) >
data_buf_sp->GetByteSize()) {
return llvm::None;
}
const MinidumpDirectory *directory = nullptr;
Status error;
llvm::ArrayRef<uint8_t> directory_data(
data_buf_sp->GetBytes() + directory_list_offset,
sizeof(MinidumpDirectory) * header->streams_count);
llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> directory_map;
for (uint32_t i = 0; i < header->streams_count; ++i) {
error = consumeObject(directory_data, directory);
if (error.Fail()) {
return llvm::None;
}
directory_map[static_cast<const uint32_t>(directory->stream_type)] =
directory->location;
}
return MinidumpParser(data_buf_sp, header, std::move(directory_map));
}
MinidumpParser::MinidumpParser(
const lldb::DataBufferSP &data_buf_sp, const MinidumpHeader *header,
llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> &&directory_map)
: m_data_sp(data_buf_sp), m_header(header), m_directory_map(directory_map) {
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
m_data_sp->GetByteSize());
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetStream(MinidumpStreamType stream_type) {
auto iter = m_directory_map.find(static_cast<uint32_t>(stream_type));
if (iter == m_directory_map.end())
return {};
// check if there is enough data
if (iter->second.rva + iter->second.data_size > m_data_sp->GetByteSize())
return {};
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes() + iter->second.rva,
iter->second.data_size);
}
llvm::Optional<std::string> MinidumpParser::GetMinidumpString(uint32_t rva) {
auto arr_ref = m_data_sp->GetData();
if (rva > arr_ref.size())
return llvm::None;
arr_ref = arr_ref.drop_front(rva);
return parseMinidumpString(arr_ref);
}
llvm::ArrayRef<MinidumpThread> MinidumpParser::GetThreads() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ThreadList);
if (data.size() == 0)
return llvm::None;
return MinidumpThread::ParseThreadList(data);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const MinidumpThread &td) {
if (td.thread_context.rva + td.thread_context.data_size > GetData().size())
return {};
return GetData().slice(td.thread_context.rva, td.thread_context.data_size);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const MinidumpThread &td) {
// On Windows, a 32-bit process can run on a 64-bit machine under
// WOW64. If the minidump was captured with a 64-bit debugger, then
// the CONTEXT we just grabbed from the mini_dump_thread is the one
// for the 64-bit "native" process rather than the 32-bit "guest"
// process we care about. In this case, we can get the 32-bit CONTEXT
// from the TEB (Thread Environment Block) of the 64-bit process.
auto teb_mem = GetMemory(td.teb, sizeof(TEB64));
if (teb_mem.empty())
return {};
const TEB64 *wow64teb;
Status error = consumeObject(teb_mem, wow64teb);
if (error.Fail())
return {};
// Slot 1 of the thread-local storage in the 64-bit TEB points to a
// structure that includes the 32-bit CONTEXT (after a ULONG).
// See: https://msdn.microsoft.com/en-us/library/ms681670.aspx
auto context =
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
if (context.size() < sizeof(MinidumpContext_x86_32))
return {};
return context;
// NOTE: We don't currently use the TEB for anything else. If we
// need it in the future, the 32-bit TEB is located according to the address
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
const MinidumpSystemInfo *MinidumpParser::GetSystemInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::SystemInfo);
if (data.size() == 0)
return nullptr;
return MinidumpSystemInfo::Parse(data);
}
ArchSpec MinidumpParser::GetArchitecture() {
ArchSpec arch_spec;
const MinidumpSystemInfo *system_info = GetSystemInfo();
if (!system_info)
return arch_spec;
// TODO what to do about big endiand flavors of arm ?
// TODO set the arm subarch stuff if the minidump has info about it
llvm::Triple triple;
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
const MinidumpCPUArchitecture arch =
static_cast<const MinidumpCPUArchitecture>(
static_cast<const uint32_t>(system_info->processor_arch));
switch (arch) {
case MinidumpCPUArchitecture::X86:
triple.setArch(llvm::Triple::ArchType::x86);
break;
case MinidumpCPUArchitecture::AMD64:
triple.setArch(llvm::Triple::ArchType::x86_64);
break;
case MinidumpCPUArchitecture::ARM:
triple.setArch(llvm::Triple::ArchType::arm);
break;
case MinidumpCPUArchitecture::ARM64:
triple.setArch(llvm::Triple::ArchType::aarch64);
break;
default:
triple.setArch(llvm::Triple::ArchType::UnknownArch);
break;
}
const MinidumpOSPlatform os = static_cast<const MinidumpOSPlatform>(
static_cast<const uint32_t>(system_info->platform_id));
// TODO add all of the OSes that Minidump/breakpad distinguishes?
switch (os) {
case MinidumpOSPlatform::Win32S:
case MinidumpOSPlatform::Win32Windows:
case MinidumpOSPlatform::Win32NT:
case MinidumpOSPlatform::Win32CE:
triple.setOS(llvm::Triple::OSType::Win32);
break;
case MinidumpOSPlatform::Linux:
triple.setOS(llvm::Triple::OSType::Linux);
break;
case MinidumpOSPlatform::MacOSX:
triple.setOS(llvm::Triple::OSType::MacOSX);
break;
case MinidumpOSPlatform::Android:
triple.setOS(llvm::Triple::OSType::Linux);
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
break;
default:
triple.setOS(llvm::Triple::OSType::UnknownOS);
break;
}
arch_spec.SetTriple(triple);
return arch_spec;
}
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MiscInfo);
if (data.size() == 0)
return nullptr;
return MinidumpMiscInfo::Parse(data);
}
llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::LinuxProcStatus);
if (data.size() == 0)
return llvm::None;
return LinuxProcStatus::Parse(data);
}
llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
const MinidumpMiscInfo *misc_info = GetMiscInfo();
if (misc_info != nullptr) {
return misc_info->GetPid();
}
llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
if (proc_status.hasValue()) {
return proc_status->GetPid();
}
return llvm::None;
}
llvm::ArrayRef<MinidumpModule> MinidumpParser::GetModuleList() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ModuleList);
if (data.size() == 0)
return {};
return MinidumpModule::ParseModuleList(data);
}
std::vector<const MinidumpModule *> MinidumpParser::GetFilteredModuleList() {
llvm::ArrayRef<MinidumpModule> modules = GetModuleList();
// map module_name -> pair(load_address, pointer to module struct in memory)
llvm::StringMap<std::pair<uint64_t, const MinidumpModule *>> lowest_addr;
std::vector<const MinidumpModule *> filtered_modules;
llvm::Optional<std::string> name;
std::string module_name;
for (const auto &module : modules) {
name = GetMinidumpString(module.module_name_rva);
if (!name)
continue;
module_name = name.getValue();
auto iter = lowest_addr.end();
bool exists;
std::tie(iter, exists) = lowest_addr.try_emplace(
module_name, std::make_pair(module.base_of_image, &module));
if (exists && module.base_of_image < iter->second.first)
iter->second = std::make_pair(module.base_of_image, &module);
}
filtered_modules.reserve(lowest_addr.size());
for (const auto &module : lowest_addr) {
filtered_modules.push_back(module.second.second);
}
return filtered_modules;
}
const MinidumpExceptionStream *MinidumpParser::GetExceptionStream() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::Exception);
if (data.size() == 0)
return nullptr;
return MinidumpExceptionStream::Parse(data);
}
llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryList);
llvm::ArrayRef<uint8_t> data64 = GetStream(MinidumpStreamType::Memory64List);
if (data.empty() && data64.empty())
return llvm::None;
if (!data.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor> memory_list =
MinidumpMemoryDescriptor::ParseMemoryList(data);
if (memory_list.empty())
return llvm::None;
for (const auto &memory_desc : memory_list) {
const MinidumpLocationDescriptor &loc_desc = memory_desc.memory;
const lldb::addr_t range_start = memory_desc.start_of_memory_range;
const size_t range_size = loc_desc.data_size;
if (loc_desc.rva + loc_desc.data_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(loc_desc.rva, range_size));
}
}
}
// Some Minidumps have a Memory64ListStream that captures all the heap
// memory (full-memory Minidumps). We can't exactly use the same loop as
// above, because the Minidump uses slightly different data structures to
// describe those
if (!data64.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
uint64_t base_rva;
std::tie(memory64_list, base_rva) =
MinidumpMemoryDescriptor64::ParseMemory64List(data64);
if (memory64_list.empty())
return llvm::None;
for (const auto &memory_desc64 : memory64_list) {
const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
const size_t range_size = memory_desc64.data_size;
if (base_rva + range_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(base_rva, range_size));
}
base_rva += range_size;
}
}
return llvm::None;
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
size_t size) {
// I don't have a sense of how frequently this is called or how many memory
// ranges a Minidump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
if (!range)
return {};
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and
// how much overlap there is.
const size_t offset = addr - range->start;
if (addr < range->start || offset >= range->range_ref.size())
return {};
const size_t overlap = std::min(size, range->range_ref.size() - offset);
return range->range_ref.slice(offset, overlap);
}
llvm::Optional<MemoryRegionInfo>
MinidumpParser::GetMemoryRegionInfo(lldb::addr_t load_addr) {
MemoryRegionInfo info;
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryInfoList);
if (data.empty())
return llvm::None;
std::vector<const MinidumpMemoryInfo *> mem_info_list =
MinidumpMemoryInfo::ParseMemoryInfoList(data);
if (mem_info_list.empty())
return llvm::None;
const auto yes = MemoryRegionInfo::eYes;
const auto no = MemoryRegionInfo::eNo;
const MinidumpMemoryInfo *next_entry = nullptr;
for (const auto &entry : mem_info_list) {
const auto head = entry->base_address;
const auto tail = head + entry->region_size;
if (head <= load_addr && load_addr < tail) {
info.GetRange().SetRangeBase(
(entry->state != uint32_t(MinidumpMemoryInfoState::MemFree))
? head
: load_addr);
info.GetRange().SetRangeEnd(tail);
const uint32_t PageNoAccess =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageNoAccess);
info.SetReadable((entry->protect & PageNoAccess) == 0 ? yes : no);
const uint32_t PageWritable =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageWritable);
info.SetWritable((entry->protect & PageWritable) != 0 ? yes : no);
const uint32_t PageExecutable = static_cast<uint32_t>(
MinidumpMemoryProtectionContants::PageExecutable);
info.SetExecutable((entry->protect & PageExecutable) != 0 ? yes : no);
const uint32_t MemFree =
static_cast<uint32_t>(MinidumpMemoryInfoState::MemFree);
info.SetMapped((entry->state != MemFree) ? yes : no);
return info;
} else if (head > load_addr &&
(next_entry == nullptr || head < next_entry->base_address)) {
// In case there is no region containing load_addr keep track of the
// nearest region after load_addr so we can return the distance to it.
next_entry = entry;
}
}
// No containing region found. Create an unmapped region that extends to the
// next region or LLDB_INVALID_ADDRESS
info.GetRange().SetRangeBase(load_addr);
info.GetRange().SetRangeEnd((next_entry != nullptr) ? next_entry->base_address
: LLDB_INVALID_ADDRESS);
info.SetReadable(no);
info.SetWritable(no);
info.SetExecutable(no);
info.SetMapped(no);
// Note that the memory info list doesn't seem to contain ranges in kernel
// space, so if you're walking a stack that has kernel frames, the stack may
// appear truncated.
return info;
}
|