1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// For each file, managed by TUScheduler, we create a single ASTWorker that
// manages an AST for that file. All operations that modify or read the AST are
// run on a separate dedicated thread asynchronously in FIFO order.
//
// We start processing each update immediately after we receive it. If two or
// more updates come subsequently without reads in-between, we attempt to drop
// an older one to not waste time building the ASTs we don't need.
//
// The processing thread of the ASTWorker is also responsible for building the
// preamble. However, unlike AST, the same preamble can be read concurrently, so
// we run each of async preamble reads on its own thread.
//
// To limit the concurrent load that clangd produces we mantain a semaphore that
// keeps more than a fixed number of threads from running concurrently.
//
// Rationale for cancelling updates.
// LSP clients can send updates to clangd on each keystroke. Some files take
// significant time to parse (e.g. a few seconds) and clangd can get starved by
// the updates to those files. Therefore we try to process only the last update,
// if possible.
// Our current strategy to do that is the following:
// - For each update we immediately schedule rebuild of the AST.
// - Rebuild of the AST checks if it was cancelled before doing any actual work.
// If it was, it does not do an actual rebuild, only reports llvm::None to the
// callback
// - When adding an update, we cancel the last update in the queue if it didn't
// have any reads.
// There is probably a optimal ways to do that. One approach we might take is
// the following:
// - For each update we remember the pending inputs, but delay rebuild of the
// AST for some timeout.
// - If subsequent updates come before rebuild was started, we replace the
// pending inputs and reset the timer.
// - If any reads of the AST are scheduled, we start building the AST
// immediately.
#include "TUScheduler.h"
#include "Logger.h"
#include "Trace.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/PCHContainerOperations.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <memory>
#include <queue>
#include <thread>
namespace clang {
namespace clangd {
using std::chrono::steady_clock;
namespace {
class ASTWorker;
}
/// An LRU cache of idle ASTs.
/// Because we want to limit the overall number of these we retain, the cache
/// owns ASTs (and may evict them) while their workers are idle.
/// Workers borrow ASTs when active, and return them when done.
class TUScheduler::ASTCache {
public:
using Key = const ASTWorker *;
ASTCache(unsigned MaxRetainedASTs) : MaxRetainedASTs(MaxRetainedASTs) {}
/// Returns result of getUsedBytes() for the AST cached by \p K.
/// If no AST is cached, 0 is returned.
std::size_t getUsedBytes(Key K) {
std::lock_guard<std::mutex> Lock(Mut);
auto It = findByKey(K);
if (It == LRU.end() || !It->second)
return 0;
return It->second->getUsedBytes();
}
/// Store the value in the pool, possibly removing the last used AST.
/// The value should not be in the pool when this function is called.
void put(Key K, std::unique_ptr<ParsedAST> V) {
std::unique_lock<std::mutex> Lock(Mut);
assert(findByKey(K) == LRU.end());
LRU.insert(LRU.begin(), {K, std::move(V)});
if (LRU.size() <= MaxRetainedASTs)
return;
// We're past the limit, remove the last element.
std::unique_ptr<ParsedAST> ForCleanup = std::move(LRU.back().second);
LRU.pop_back();
// Run the expensive destructor outside the lock.
Lock.unlock();
ForCleanup.reset();
}
/// Returns the cached value for \p K, or llvm::None if the value is not in
/// the cache anymore. If nullptr was cached for \p K, this function will
/// return a null unique_ptr wrapped into an optional.
llvm::Optional<std::unique_ptr<ParsedAST>> take(Key K) {
std::unique_lock<std::mutex> Lock(Mut);
auto Existing = findByKey(K);
if (Existing == LRU.end())
return llvm::None;
std::unique_ptr<ParsedAST> V = std::move(Existing->second);
LRU.erase(Existing);
// GCC 4.8 fails to compile `return V;`, as it tries to call the copy
// constructor of unique_ptr, so we call the move ctor explicitly to avoid
// this miscompile.
return llvm::Optional<std::unique_ptr<ParsedAST>>(std::move(V));
}
private:
using KVPair = std::pair<Key, std::unique_ptr<ParsedAST>>;
std::vector<KVPair>::iterator findByKey(Key K) {
return std::find_if(LRU.begin(), LRU.end(),
[K](const KVPair &P) { return P.first == K; });
}
std::mutex Mut;
unsigned MaxRetainedASTs;
/// Items sorted in LRU order, i.e. first item is the most recently accessed
/// one.
std::vector<KVPair> LRU; /* GUARDED_BY(Mut) */
};
namespace {
class ASTWorkerHandle;
/// Owns one instance of the AST, schedules updates and reads of it.
/// Also responsible for building and providing access to the preamble.
/// Each ASTWorker processes the async requests sent to it on a separate
/// dedicated thread.
/// The ASTWorker that manages the AST is shared by both the processing thread
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
/// remove() is called, but its thread may be busy and we don't want to block.
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
/// signals the worker to exit its run loop and gives up shared ownership of the
/// worker.
class ASTWorker {
friend class ASTWorkerHandle;
ASTWorker(PathRef FileName, TUScheduler::ASTCache &LRUCache,
Semaphore &Barrier, bool RunSync,
steady_clock::duration UpdateDebounce,
std::shared_ptr<PCHContainerOperations> PCHs,
bool StorePreamblesInMemory,
PreambleParsedCallback PreambleCallback);
public:
/// Create a new ASTWorker and return a handle to it.
/// The processing thread is spawned using \p Tasks. However, when \p Tasks
/// is null, all requests will be processed on the calling thread
/// synchronously instead. \p Barrier is acquired when processing each
/// request, it is be used to limit the number of actively running threads.
static ASTWorkerHandle create(PathRef FileName,
TUScheduler::ASTCache &IdleASTs,
AsyncTaskRunner *Tasks, Semaphore &Barrier,
steady_clock::duration UpdateDebounce,
std::shared_ptr<PCHContainerOperations> PCHs,
bool StorePreamblesInMemory,
PreambleParsedCallback PreambleCallback);
~ASTWorker();
void update(ParseInputs Inputs, WantDiagnostics,
llvm::unique_function<void(std::vector<Diag>)> OnUpdated);
void
runWithAST(llvm::StringRef Name,
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action);
bool blockUntilIdle(Deadline Timeout) const;
std::shared_ptr<const PreambleData> getPossiblyStalePreamble() const;
/// Wait for the first build of preamble to finish. Preamble itself can be
/// accessed via getPossibleStalePreamble(). Note that this function will
/// return after an unsuccessful build of the preamble too, i.e. result of
/// getPossiblyStalePreamble() can be null even after this function returns.
void waitForFirstPreamble() const;
std::size_t getUsedBytes() const;
bool isASTCached() const;
private:
// Must be called exactly once on processing thread. Will return after
// stop() is called on a separate thread and all pending requests are
// processed.
void run();
/// Signal that run() should finish processing pending requests and exit.
void stop();
/// Adds a new task to the end of the request queue.
void startTask(llvm::StringRef Name, llvm::unique_function<void()> Task,
llvm::Optional<WantDiagnostics> UpdateType);
/// Determines the next action to perform.
/// All actions that should never run are disarded.
/// Returns a deadline for the next action. If it's expired, run now.
/// scheduleLocked() is called again at the deadline, or if requests arrive.
Deadline scheduleLocked();
/// Should the first task in the queue be skipped instead of run?
bool shouldSkipHeadLocked() const;
struct Request {
llvm::unique_function<void()> Action;
std::string Name;
steady_clock::time_point AddTime;
Context Ctx;
llvm::Optional<WantDiagnostics> UpdateType;
};
/// Handles retention of ASTs.
TUScheduler::ASTCache &IdleASTs;
const bool RunSync;
/// Time to wait after an update to see whether another update obsoletes it.
const steady_clock::duration UpdateDebounce;
/// File that ASTWorker is reponsible for.
const Path FileName;
/// Whether to keep the built preambles in memory or on disk.
const bool StorePreambleInMemory;
/// Callback, passed to the preamble builder.
const PreambleParsedCallback PreambleCallback;
/// Helper class required to build the ASTs.
const std::shared_ptr<PCHContainerOperations> PCHs;
Semaphore &Barrier;
/// Inputs, corresponding to the current state of AST.
ParseInputs FileInputs;
/// Whether the diagnostics for the current FileInputs were reported to the
/// users before.
bool DiagsWereReported = false;
/// Size of the last AST
/// Guards members used by both TUScheduler and the worker thread.
mutable std::mutex Mutex;
std::shared_ptr<const PreambleData> LastBuiltPreamble; /* GUARDED_BY(Mutex) */
/// Becomes ready when the first preamble build finishes.
Notification PreambleWasBuilt;
/// Set to true to signal run() to finish processing.
bool Done; /* GUARDED_BY(Mutex) */
std::deque<Request> Requests; /* GUARDED_BY(Mutex) */
mutable std::condition_variable RequestsCV;
};
/// A smart-pointer-like class that points to an active ASTWorker.
/// In destructor, signals to the underlying ASTWorker that no new requests will
/// be sent and the processing loop may exit (after running all pending
/// requests).
class ASTWorkerHandle {
friend class ASTWorker;
ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
: Worker(std::move(Worker)) {
assert(this->Worker);
}
public:
ASTWorkerHandle(const ASTWorkerHandle &) = delete;
ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
ASTWorkerHandle(ASTWorkerHandle &&) = default;
ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;
~ASTWorkerHandle() {
if (Worker)
Worker->stop();
}
ASTWorker &operator*() {
assert(Worker && "Handle was moved from");
return *Worker;
}
ASTWorker *operator->() {
assert(Worker && "Handle was moved from");
return Worker.get();
}
/// Returns an owning reference to the underlying ASTWorker that can outlive
/// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
/// be schedule via the returned reference, i.e. only reads of the preamble
/// are possible.
std::shared_ptr<const ASTWorker> lock() { return Worker; }
private:
std::shared_ptr<ASTWorker> Worker;
};
ASTWorkerHandle ASTWorker::create(PathRef FileName,
TUScheduler::ASTCache &IdleASTs,
AsyncTaskRunner *Tasks, Semaphore &Barrier,
steady_clock::duration UpdateDebounce,
std::shared_ptr<PCHContainerOperations> PCHs,
bool StorePreamblesInMemory,
PreambleParsedCallback PreambleCallback) {
std::shared_ptr<ASTWorker> Worker(new ASTWorker(
FileName, IdleASTs, Barrier, /*RunSync=*/!Tasks, UpdateDebounce,
std::move(PCHs), StorePreamblesInMemory, std::move(PreambleCallback)));
if (Tasks)
Tasks->runAsync("worker:" + llvm::sys::path::filename(FileName),
[Worker]() { Worker->run(); });
return ASTWorkerHandle(std::move(Worker));
}
ASTWorker::ASTWorker(PathRef FileName, TUScheduler::ASTCache &LRUCache,
Semaphore &Barrier, bool RunSync,
steady_clock::duration UpdateDebounce,
std::shared_ptr<PCHContainerOperations> PCHs,
bool StorePreamblesInMemory,
PreambleParsedCallback PreambleCallback)
: IdleASTs(LRUCache), RunSync(RunSync), UpdateDebounce(UpdateDebounce),
FileName(FileName), StorePreambleInMemory(StorePreamblesInMemory),
PreambleCallback(std::move(PreambleCallback)), PCHs(std::move(PCHs)),
Barrier(Barrier), Done(false) {}
ASTWorker::~ASTWorker() {
// Make sure we remove the cached AST, if any.
IdleASTs.take(this);
#ifndef NDEBUG
std::lock_guard<std::mutex> Lock(Mutex);
assert(Done && "handle was not destroyed");
assert(Requests.empty() && "unprocessed requests when destroying ASTWorker");
#endif
}
void ASTWorker::update(
ParseInputs Inputs, WantDiagnostics WantDiags,
llvm::unique_function<void(std::vector<Diag>)> OnUpdated) {
auto Task = [=](decltype(OnUpdated) OnUpdated) mutable {
// Will be used to check if we can avoid rebuilding the AST.
bool InputsAreTheSame =
std::tie(FileInputs.CompileCommand, FileInputs.Contents) ==
std::tie(Inputs.CompileCommand, Inputs.Contents);
tooling::CompileCommand OldCommand = std::move(FileInputs.CompileCommand);
bool PrevDiagsWereReported = DiagsWereReported;
FileInputs = Inputs;
DiagsWereReported = false;
log("Updating file {0} with command [{1}] {2}", FileName,
Inputs.CompileCommand.Directory,
llvm::join(Inputs.CompileCommand.CommandLine, " "));
// Rebuild the preamble and the AST.
std::unique_ptr<CompilerInvocation> Invocation =
buildCompilerInvocation(Inputs);
if (!Invocation) {
elog("Could not build CompilerInvocation for file {0}", FileName);
// Remove the old AST if it's still in cache.
IdleASTs.take(this);
// Make sure anyone waiting for the preamble gets notified it could not
// be built.
PreambleWasBuilt.notify();
return;
}
std::shared_ptr<const PreambleData> OldPreamble =
getPossiblyStalePreamble();
std::shared_ptr<const PreambleData> NewPreamble =
buildPreamble(FileName, *Invocation, OldPreamble, OldCommand, Inputs,
PCHs, StorePreambleInMemory, PreambleCallback);
bool CanReuseAST = InputsAreTheSame && (OldPreamble == NewPreamble);
{
std::lock_guard<std::mutex> Lock(Mutex);
if (NewPreamble)
LastBuiltPreamble = NewPreamble;
}
// Before doing the expensive AST reparse, we want to release our reference
// to the old preamble, so it can be freed if there are no other references
// to it.
OldPreamble.reset();
PreambleWasBuilt.notify();
if (!CanReuseAST) {
IdleASTs.take(this); // Remove the old AST if it's still in cache.
} else {
// Since we don't need to rebuild the AST, we might've already reported
// the diagnostics for it.
if (PrevDiagsWereReported) {
DiagsWereReported = true;
// Take a shortcut and don't report the diagnostics, since they should
// not changed. All the clients should handle the lack of OnUpdated()
// call anyway to handle empty result from buildAST.
// FIXME(ibiryukov): the AST could actually change if non-preamble
// includes changed, but we choose to ignore it.
// FIXME(ibiryukov): should we refresh the cache in IdleASTs for the
// current file at this point?
log("Skipping rebuild of the AST for {0}, inputs are the same.",
FileName);
return;
}
}
// We only need to build the AST if diagnostics were requested.
if (WantDiags == WantDiagnostics::No)
return;
// Get the AST for diagnostics.
llvm::Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
if (!AST) {
llvm::Optional<ParsedAST> NewAST =
buildAST(FileName, std::move(Invocation), Inputs, NewPreamble, PCHs);
AST = NewAST ? llvm::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
}
// We want to report the diagnostics even if this update was cancelled.
// It seems more useful than making the clients wait indefinitely if they
// spam us with updates.
// Note *AST can be still be null if buildAST fails.
if (*AST) {
OnUpdated((*AST)->getDiagnostics());
DiagsWereReported = true;
}
// Stash the AST in the cache for further use.
IdleASTs.put(this, std::move(*AST));
};
startTask("Update", Bind(Task, std::move(OnUpdated)), WantDiags);
}
void ASTWorker::runWithAST(
llvm::StringRef Name,
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action) {
auto Task = [=](decltype(Action) Action) {
llvm::Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
if (!AST) {
std::unique_ptr<CompilerInvocation> Invocation =
buildCompilerInvocation(FileInputs);
// Try rebuilding the AST.
llvm::Optional<ParsedAST> NewAST =
Invocation
? buildAST(FileName,
llvm::make_unique<CompilerInvocation>(*Invocation),
FileInputs, getPossiblyStalePreamble(), PCHs)
: llvm::None;
AST = NewAST ? llvm::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
}
// Make sure we put the AST back into the LRU cache.
auto _ = llvm::make_scope_exit(
[&AST, this]() { IdleASTs.put(this, std::move(*AST)); });
// Run the user-provided action.
if (!*AST)
return Action(llvm::make_error<llvm::StringError>(
"invalid AST", llvm::errc::invalid_argument));
Action(InputsAndAST{FileInputs, **AST});
};
startTask(Name, Bind(Task, std::move(Action)),
/*UpdateType=*/llvm::None);
}
std::shared_ptr<const PreambleData>
ASTWorker::getPossiblyStalePreamble() const {
std::lock_guard<std::mutex> Lock(Mutex);
return LastBuiltPreamble;
}
void ASTWorker::waitForFirstPreamble() const {
PreambleWasBuilt.wait();
}
std::size_t ASTWorker::getUsedBytes() const {
// Note that we don't report the size of ASTs currently used for processing
// the in-flight requests. We used this information for debugging purposes
// only, so this should be fine.
std::size_t Result = IdleASTs.getUsedBytes(this);
if (auto Preamble = getPossiblyStalePreamble())
Result += Preamble->Preamble.getSize();
return Result;
}
bool ASTWorker::isASTCached() const { return IdleASTs.getUsedBytes(this) != 0; }
void ASTWorker::stop() {
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "stop() called twice");
Done = true;
}
RequestsCV.notify_all();
}
void ASTWorker::startTask(llvm::StringRef Name,
llvm::unique_function<void()> Task,
llvm::Optional<WantDiagnostics> UpdateType) {
if (RunSync) {
assert(!Done && "running a task after stop()");
trace::Span Tracer(Name + ":" + llvm::sys::path::filename(FileName));
Task();
return;
}
{
std::lock_guard<std::mutex> Lock(Mutex);
assert(!Done && "running a task after stop()");
Requests.push_back({std::move(Task), Name, steady_clock::now(),
Context::current().clone(), UpdateType});
}
RequestsCV.notify_all();
}
void ASTWorker::run() {
while (true) {
Request Req;
{
std::unique_lock<std::mutex> Lock(Mutex);
for (auto Wait = scheduleLocked(); !Wait.expired();
Wait = scheduleLocked()) {
if (Done) {
if (Requests.empty())
return;
else // Even though Done is set, finish pending requests.
break; // However, skip delays to shutdown fast.
}
// Tracing: we have a next request, attribute this sleep to it.
Optional<WithContext> Ctx;
Optional<trace::Span> Tracer;
if (!Requests.empty()) {
Ctx.emplace(Requests.front().Ctx.clone());
Tracer.emplace("Debounce");
SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name);
if (!(Wait == Deadline::infinity()))
SPAN_ATTACH(*Tracer, "sleep_ms",
std::chrono::duration_cast<std::chrono::milliseconds>(
Wait.time() - steady_clock::now())
.count());
}
wait(Lock, RequestsCV, Wait);
}
Req = std::move(Requests.front());
// Leave it on the queue for now, so waiters don't see an empty queue.
} // unlock Mutex
{
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Req.Ctx));
trace::Span Tracer(Req.Name);
Req.Action();
}
{
std::lock_guard<std::mutex> Lock(Mutex);
Requests.pop_front();
}
RequestsCV.notify_all();
}
}
Deadline ASTWorker::scheduleLocked() {
if (Requests.empty())
return Deadline::infinity(); // Wait for new requests.
while (shouldSkipHeadLocked())
Requests.pop_front();
assert(!Requests.empty() && "skipped the whole queue");
// Some updates aren't dead yet, but never end up being used.
// e.g. the first keystroke is live until obsoleted by the second.
// We debounce "maybe-unused" writes, sleeping 500ms in case they become dead.
// But don't delay reads (including updates where diagnostics are needed).
for (const auto &R : Requests)
if (R.UpdateType == None || R.UpdateType == WantDiagnostics::Yes)
return Deadline::zero();
// Front request needs to be debounced, so determine when we're ready.
Deadline D(Requests.front().AddTime + UpdateDebounce);
return D;
}
// Returns true if Requests.front() is a dead update that can be skipped.
bool ASTWorker::shouldSkipHeadLocked() const {
assert(!Requests.empty());
auto Next = Requests.begin();
auto UpdateType = Next->UpdateType;
if (!UpdateType) // Only skip updates.
return false;
++Next;
// An update is live if its AST might still be read.
// That is, if it's not immediately followed by another update.
if (Next == Requests.end() || !Next->UpdateType)
return false;
// The other way an update can be live is if its diagnostics might be used.
switch (*UpdateType) {
case WantDiagnostics::Yes:
return false; // Always used.
case WantDiagnostics::No:
return true; // Always dead.
case WantDiagnostics::Auto:
// Used unless followed by an update that generates diagnostics.
for (; Next != Requests.end(); ++Next)
if (Next->UpdateType == WantDiagnostics::Yes ||
Next->UpdateType == WantDiagnostics::Auto)
return true; // Prefer later diagnostics.
return false;
}
llvm_unreachable("Unknown WantDiagnostics");
}
bool ASTWorker::blockUntilIdle(Deadline Timeout) const {
std::unique_lock<std::mutex> Lock(Mutex);
return wait(Lock, RequestsCV, Timeout, [&] { return Requests.empty(); });
}
} // namespace
unsigned getDefaultAsyncThreadsCount() {
unsigned HardwareConcurrency = std::thread::hardware_concurrency();
// C++ standard says that hardware_concurrency()
// may return 0, fallback to 1 worker thread in
// that case.
if (HardwareConcurrency == 0)
return 1;
return HardwareConcurrency;
}
struct TUScheduler::FileData {
/// Latest inputs, passed to TUScheduler::update().
std::string Contents;
tooling::CompileCommand Command;
ASTWorkerHandle Worker;
};
TUScheduler::TUScheduler(unsigned AsyncThreadsCount,
bool StorePreamblesInMemory,
PreambleParsedCallback PreambleCallback,
std::chrono::steady_clock::duration UpdateDebounce,
ASTRetentionPolicy RetentionPolicy)
: StorePreamblesInMemory(StorePreamblesInMemory),
PCHOps(std::make_shared<PCHContainerOperations>()),
PreambleCallback(std::move(PreambleCallback)), Barrier(AsyncThreadsCount),
IdleASTs(llvm::make_unique<ASTCache>(RetentionPolicy.MaxRetainedASTs)),
UpdateDebounce(UpdateDebounce) {
if (0 < AsyncThreadsCount) {
PreambleTasks.emplace();
WorkerThreads.emplace();
}
}
TUScheduler::~TUScheduler() {
// Notify all workers that they need to stop.
Files.clear();
// Wait for all in-flight tasks to finish.
if (PreambleTasks)
PreambleTasks->wait();
if (WorkerThreads)
WorkerThreads->wait();
}
bool TUScheduler::blockUntilIdle(Deadline D) const {
for (auto &File : Files)
if (!File.getValue()->Worker->blockUntilIdle(D))
return false;
if (PreambleTasks)
if (!PreambleTasks->wait(D))
return false;
return true;
}
void TUScheduler::update(
PathRef File, ParseInputs Inputs, WantDiagnostics WantDiags,
llvm::unique_function<void(std::vector<Diag>)> OnUpdated) {
std::unique_ptr<FileData> &FD = Files[File];
if (!FD) {
// Create a new worker to process the AST-related tasks.
ASTWorkerHandle Worker = ASTWorker::create(
File, *IdleASTs, WorkerThreads ? WorkerThreads.getPointer() : nullptr,
Barrier, UpdateDebounce, PCHOps, StorePreamblesInMemory,
PreambleCallback);
FD = std::unique_ptr<FileData>(new FileData{
Inputs.Contents, Inputs.CompileCommand, std::move(Worker)});
} else {
FD->Contents = Inputs.Contents;
FD->Command = Inputs.CompileCommand;
}
FD->Worker->update(std::move(Inputs), WantDiags, std::move(OnUpdated));
}
void TUScheduler::remove(PathRef File) {
bool Removed = Files.erase(File);
if (!Removed)
elog("Trying to remove file from TUScheduler that is not tracked: {0}",
File);
}
void TUScheduler::runWithAST(
llvm::StringRef Name, PathRef File,
llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to get AST for non-added document",
llvm::errc::invalid_argument));
return;
}
It->second->Worker->runWithAST(Name, std::move(Action));
}
void TUScheduler::runWithPreamble(
llvm::StringRef Name, PathRef File,
llvm::unique_function<void(llvm::Expected<InputsAndPreamble>)> Action) {
auto It = Files.find(File);
if (It == Files.end()) {
Action(llvm::make_error<llvm::StringError>(
"trying to get preamble for non-added document",
llvm::errc::invalid_argument));
return;
}
if (!PreambleTasks) {
trace::Span Tracer(Name);
SPAN_ATTACH(Tracer, "file", File);
std::shared_ptr<const PreambleData> Preamble =
It->second->Worker->getPossiblyStalePreamble();
Action(InputsAndPreamble{It->second->Contents, It->second->Command,
Preamble.get()});
return;
}
std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
auto Task = [Worker, this](std::string Name, std::string File,
std::string Contents,
tooling::CompileCommand Command, Context Ctx,
decltype(Action) Action) mutable {
// We don't want to be running preamble actions before the preamble was
// built for the first time. This avoids extra work of processing the
// preamble headers in parallel multiple times.
Worker->waitForFirstPreamble();
std::lock_guard<Semaphore> BarrierLock(Barrier);
WithContext Guard(std::move(Ctx));
trace::Span Tracer(Name);
SPAN_ATTACH(Tracer, "file", File);
std::shared_ptr<const PreambleData> Preamble =
Worker->getPossiblyStalePreamble();
Action(InputsAndPreamble{Contents, Command, Preamble.get()});
};
PreambleTasks->runAsync("task:" + llvm::sys::path::filename(File),
Bind(Task, std::string(Name), std::string(File),
It->second->Contents, It->second->Command,
Context::current().clone(), std::move(Action)));
}
std::vector<std::pair<Path, std::size_t>>
TUScheduler::getUsedBytesPerFile() const {
std::vector<std::pair<Path, std::size_t>> Result;
Result.reserve(Files.size());
for (auto &&PathAndFile : Files)
Result.push_back(
{PathAndFile.first(), PathAndFile.second->Worker->getUsedBytes()});
return Result;
}
std::vector<Path> TUScheduler::getFilesWithCachedAST() const {
std::vector<Path> Result;
for (auto &&PathAndFile : Files) {
if (!PathAndFile.second->Worker->isASTCached())
continue;
Result.push_back(PathAndFile.first());
}
return Result;
}
} // namespace clangd
} // namespace clang
|