| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 
 | //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implementation of the abstract lowering for the Swift calling convention.
//
//===----------------------------------------------------------------------===//
#include "clang/CodeGen/SwiftCallingConv.h"
#include "clang/Basic/TargetInfo.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
using namespace clang;
using namespace CodeGen;
using namespace swiftcall;
static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
  return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
}
static bool isPowerOf2(unsigned n) {
  return n == (n & -n);
}
/// Given two types with the same size, try to find a common type.
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
  assert(first != second);
  // Allow pointers to merge with integers, but prefer the integer type.
  if (first->isIntegerTy()) {
    if (second->isPointerTy()) return first;
  } else if (first->isPointerTy()) {
    if (second->isIntegerTy()) return second;
    if (second->isPointerTy()) return first;
  // Allow two vectors to be merged (given that they have the same size).
  // This assumes that we never have two different vector register sets.
  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
    if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
      if (auto commonTy = getCommonType(firstVecTy->getElementType(),
                                        secondVecTy->getElementType())) {
        return (commonTy == firstVecTy->getElementType() ? first : second);
      }
    }
  }
  return nullptr;
}
static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
}
static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
}
void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
  // Deal with various aggregate types as special cases:
  // Record types.
  if (auto recType = type->getAs<RecordType>()) {
    addTypedData(recType->getDecl(), begin);
  // Array types.
  } else if (type->isArrayType()) {
    // Incomplete array types (flexible array members?) don't provide
    // data to lay out, and the other cases shouldn't be possible.
    auto arrayType = CGM.getContext().getAsConstantArrayType(type);
    if (!arrayType) return;
    QualType eltType = arrayType->getElementType();
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
    for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
      addTypedData(eltType, begin + i * eltSize);
    }
  // Complex types.
  } else if (auto complexType = type->getAs<ComplexType>()) {
    auto eltType = complexType->getElementType();
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
    auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
    addTypedData(eltLLVMType, begin, begin + eltSize);
    addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
  // Member pointer types.
  } else if (type->getAs<MemberPointerType>()) {
    // Just add it all as opaque.
    addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
  // Everything else is scalar and should not convert as an LLVM aggregate.
  } else {
    // We intentionally convert as !ForMem because we want to preserve
    // that a type was an i1.
    auto llvmType = CGM.getTypes().ConvertType(type);
    addTypedData(llvmType, begin);
  }
}
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
}
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
                                    const ASTRecordLayout &layout) {
  // Unions are a special case.
  if (record->isUnion()) {
    for (auto field : record->fields()) {
      if (field->isBitField()) {
        addBitFieldData(field, begin, 0);
      } else {
        addTypedData(field->getType(), begin);
      }
    }
    return;
  }
  // Note that correctness does not rely on us adding things in
  // their actual order of layout; it's just somewhat more efficient
  // for the builder.
  // With that in mind, add "early" C++ data.
  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
  if (cxxRecord) {
    //   - a v-table pointer, if the class adds its own
    if (layout.hasOwnVFPtr()) {
      addTypedData(CGM.Int8PtrTy, begin);
    }
    //   - non-virtual bases
    for (auto &baseSpecifier : cxxRecord->bases()) {
      if (baseSpecifier.isVirtual()) continue;
      auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
      addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
    }
    //   - a vbptr if the class adds its own
    if (layout.hasOwnVBPtr()) {
      addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
    }
  }
  // Add fields.
  for (auto field : record->fields()) {
    auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
    if (field->isBitField()) {
      addBitFieldData(field, begin, fieldOffsetInBits);
    } else {
      addTypedData(field->getType(),
              begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
    }
  }
  // Add "late" C++ data:
  if (cxxRecord) {
    //   - virtual bases
    for (auto &vbaseSpecifier : cxxRecord->vbases()) {
      auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
      addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
    }
  }
}
void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
                                       CharUnits recordBegin,
                                       uint64_t bitfieldBitBegin) {
  assert(bitfield->isBitField());
  auto &ctx = CGM.getContext();
  auto width = bitfield->getBitWidthValue(ctx);
  // We can ignore zero-width bit-fields.
  if (width == 0) return;
  // toCharUnitsFromBits rounds down.
  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
  // Find the offset of the last byte that is partially occupied by the
  // bit-field; since we otherwise expect exclusive ends, the end is the
  // next byte.
  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
  CharUnits bitfieldByteEnd =
    ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
  addOpaqueData(recordBegin + bitfieldByteBegin,
                recordBegin + bitfieldByteEnd);
}
void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
  assert(type && "didn't provide type for typed data");
  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
}
void SwiftAggLowering::addTypedData(llvm::Type *type,
                                    CharUnits begin, CharUnits end) {
  assert(type && "didn't provide type for typed data");
  assert(getTypeStoreSize(CGM, type) == end - begin);
  // Legalize vector types.
  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
    SmallVector<llvm::Type*, 4> componentTys;
    legalizeVectorType(CGM, end - begin, vecTy, componentTys);
    assert(componentTys.size() >= 1);
    // Walk the initial components.
    for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
      llvm::Type *componentTy = componentTys[i];
      auto componentSize = getTypeStoreSize(CGM, componentTy);
      assert(componentSize < end - begin);
      addLegalTypedData(componentTy, begin, begin + componentSize);
      begin += componentSize;
    }
    return addLegalTypedData(componentTys.back(), begin, end);
  }
  // Legalize integer types.
  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
    if (!isLegalIntegerType(CGM, intTy))
      return addOpaqueData(begin, end);
  }
  // All other types should be legal.
  return addLegalTypedData(type, begin, end);
}
void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
                                         CharUnits begin, CharUnits end) {
  // Require the type to be naturally aligned.
  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
    // Try splitting vector types.
    if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
      auto split = splitLegalVectorType(CGM, end - begin, vecTy);
      auto eltTy = split.first;
      auto numElts = split.second;
      auto eltSize = (end - begin) / numElts;
      assert(eltSize == getTypeStoreSize(CGM, eltTy));
      for (size_t i = 0, e = numElts; i != e; ++i) {
        addLegalTypedData(eltTy, begin, begin + eltSize);
        begin += eltSize;
      }
      assert(begin == end);
      return;
    }
    return addOpaqueData(begin, end);
  }
  addEntry(type, begin, end);
}
void SwiftAggLowering::addEntry(llvm::Type *type,
                                CharUnits begin, CharUnits end) {
  assert((!type ||
          (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
         "cannot add aggregate-typed data");
  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
  // Fast path: we can just add entries to the end.
  if (Entries.empty() || Entries.back().End <= begin) {
    Entries.push_back({begin, end, type});
    return;
  }
  // Find the first existing entry that ends after the start of the new data.
  // TODO: do a binary search if Entries is big enough for it to matter.
  size_t index = Entries.size() - 1;
  while (index != 0) {
    if (Entries[index - 1].End <= begin) break;
    --index;
  }
  // The entry ends after the start of the new data.
  // If the entry starts after the end of the new data, there's no conflict.
  if (Entries[index].Begin >= end) {
    // This insertion is potentially O(n), but the way we generally build
    // these layouts makes that unlikely to matter: we'd need a union of
    // several very large types.
    Entries.insert(Entries.begin() + index, {begin, end, type});
    return;
  }
  // Otherwise, the ranges overlap.  The new range might also overlap
  // with later ranges.
restartAfterSplit:
  // Simplest case: an exact overlap.
  if (Entries[index].Begin == begin && Entries[index].End == end) {
    // If the types match exactly, great.
    if (Entries[index].Type == type) return;
    // If either type is opaque, make the entry opaque and return.
    if (Entries[index].Type == nullptr) {
      return;
    } else if (type == nullptr) {
      Entries[index].Type = nullptr;
      return;
    }
    // If they disagree in an ABI-agnostic way, just resolve the conflict
    // arbitrarily.
    if (auto entryType = getCommonType(Entries[index].Type, type)) {
      Entries[index].Type = entryType;
      return;
    }
    // Otherwise, make the entry opaque.
    Entries[index].Type = nullptr;
    return;
  }
  // Okay, we have an overlapping conflict of some sort.
  // If we have a vector type, split it.
  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
    auto eltTy = vecTy->getElementType();
    CharUnits eltSize = (end - begin) / vecTy->getNumElements();
    assert(eltSize == getTypeStoreSize(CGM, eltTy));
    for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
      addEntry(eltTy, begin, begin + eltSize);
      begin += eltSize;
    }
    assert(begin == end);
    return;
  }
  // If the entry is a vector type, split it and try again.
  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
    splitVectorEntry(index);
    goto restartAfterSplit;
  }
  // Okay, we have no choice but to make the existing entry opaque.
  Entries[index].Type = nullptr;
  // Stretch the start of the entry to the beginning of the range.
  if (begin < Entries[index].Begin) {
    Entries[index].Begin = begin;
    assert(index == 0 || begin >= Entries[index - 1].End);
  }
  // Stretch the end of the entry to the end of the range; but if we run
  // into the start of the next entry, just leave the range there and repeat.
  while (end > Entries[index].End) {
    assert(Entries[index].Type == nullptr);
    // If the range doesn't overlap the next entry, we're done.
    if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
      Entries[index].End = end;
      break;
    }
    // Otherwise, stretch to the start of the next entry.
    Entries[index].End = Entries[index + 1].Begin;
    // Continue with the next entry.
    index++;
    // This entry needs to be made opaque if it is not already.
    if (Entries[index].Type == nullptr)
      continue;
    // Split vector entries unless we completely subsume them.
    if (Entries[index].Type->isVectorTy() &&
        end < Entries[index].End) {
      splitVectorEntry(index);
    }
    // Make the entry opaque.
    Entries[index].Type = nullptr;
  }
}
/// Replace the entry of vector type at offset 'index' with a sequence
/// of its component vectors.
void SwiftAggLowering::splitVectorEntry(unsigned index) {
  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
  auto eltTy = split.first;
  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
  auto numElts = split.second;
  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
  CharUnits begin = Entries[index].Begin;
  for (unsigned i = 0; i != numElts; ++i) {
    Entries[index].Type = eltTy;
    Entries[index].Begin = begin;
    Entries[index].End = begin + eltSize;
    begin += eltSize;
  }
}
/// Given a power-of-two unit size, return the offset of the aligned unit
/// of that size which contains the given offset.
///
/// In other words, round down to the nearest multiple of the unit size.
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
  assert(isPowerOf2(unitSize.getQuantity()));
  auto unitMask = ~(unitSize.getQuantity() - 1);
  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
}
static bool areBytesInSameUnit(CharUnits first, CharUnits second,
                               CharUnits chunkSize) {
  return getOffsetAtStartOfUnit(first, chunkSize)
      == getOffsetAtStartOfUnit(second, chunkSize);
}
void SwiftAggLowering::finish() {
  if (Entries.empty()) {
    Finished = true;
    return;
  }
  // We logically split the layout down into a series of chunks of this size,
  // which is generally the size of a pointer.
  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
  // First pass: if two entries share a chunk, make them both opaque
  // and stretch one to meet the next.
  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
    if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(),
                           Entries[i].Begin, chunkSize)) {
      Entries[i - 1].Type = nullptr;
      Entries[i].Type = nullptr;
      Entries[i - 1].End = Entries[i].Begin;
      hasOpaqueEntries = true;
    } else if (Entries[i].Type == nullptr) {
      hasOpaqueEntries = true;
    }
  }
  // The rest of the algorithm leaves non-opaque entries alone, so if we
  // have no opaque entries, we're done.
  if (!hasOpaqueEntries) {
    Finished = true;
    return;
  }
  // Okay, move the entries to a temporary and rebuild Entries.
  auto orig = std::move(Entries);
  assert(Entries.empty());
  for (size_t i = 0, e = orig.size(); i != e; ++i) {
    // Just copy over non-opaque entries.
    if (orig[i].Type != nullptr) {
      Entries.push_back(orig[i]);
      continue;
    }
    // Scan forward to determine the full extent of the next opaque range.
    // We know from the first pass that only contiguous ranges will overlap
    // the same aligned chunk.
    auto begin = orig[i].Begin;
    auto end = orig[i].End;
    while (i + 1 != e &&
           orig[i + 1].Type == nullptr &&
           end == orig[i + 1].Begin) {
      end = orig[i + 1].End;
      i++;
    }
    // Add an entry per intersected chunk.
    do {
      // Find the smallest aligned storage unit in the maximal aligned
      // storage unit containing 'begin' that contains all the bytes in
      // the intersection between the range and this chunk.
      CharUnits localBegin = begin;
      CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
      CharUnits chunkEnd = chunkBegin + chunkSize;
      CharUnits localEnd = std::min(end, chunkEnd);
      // Just do a simple loop over ever-increasing unit sizes.
      CharUnits unitSize = CharUnits::One();
      CharUnits unitBegin, unitEnd;
      for (; ; unitSize *= 2) {
        assert(unitSize <= chunkSize);
        unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
        unitEnd = unitBegin + unitSize;
        if (unitEnd >= localEnd) break;
      }
      // Add an entry for this unit.
      auto entryTy =
        llvm::IntegerType::get(CGM.getLLVMContext(),
                               CGM.getContext().toBits(unitSize));
      Entries.push_back({unitBegin, unitEnd, entryTy});
      // The next chunk starts where this chunk left off.
      begin = localEnd;
    } while (begin != end);
  }
  // Okay, finally finished.
  Finished = true;
}
void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
  assert(Finished && "haven't yet finished lowering");
  for (auto &entry : Entries) {
    callback(entry.Begin, entry.End, entry.Type);
  }
}
std::pair<llvm::StructType*, llvm::Type*>
SwiftAggLowering::getCoerceAndExpandTypes() const {
  assert(Finished && "haven't yet finished lowering");
  auto &ctx = CGM.getLLVMContext();
  if (Entries.empty()) {
    auto type = llvm::StructType::get(ctx);
    return { type, type };
  }
  SmallVector<llvm::Type*, 8> elts;
  CharUnits lastEnd = CharUnits::Zero();
  bool hasPadding = false;
  bool packed = false;
  for (auto &entry : Entries) {
    if (entry.Begin != lastEnd) {
      auto paddingSize = entry.Begin - lastEnd;
      assert(!paddingSize.isNegative());
      auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
                                          paddingSize.getQuantity());
      elts.push_back(padding);
      hasPadding = true;
    }
    if (!packed && !entry.Begin.isMultipleOf(
          CharUnits::fromQuantity(
            CGM.getDataLayout().getABITypeAlignment(entry.Type))))
      packed = true;
    elts.push_back(entry.Type);
    lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
    assert(entry.End <= lastEnd);
  }
  // We don't need to adjust 'packed' to deal with possible tail padding
  // because we never do that kind of access through the coercion type.
  auto coercionType = llvm::StructType::get(ctx, elts, packed);
  llvm::Type *unpaddedType = coercionType;
  if (hasPadding) {
    elts.clear();
    for (auto &entry : Entries) {
      elts.push_back(entry.Type);
    }
    if (elts.size() == 1) {
      unpaddedType = elts[0];
    } else {
      unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
    }
  } else if (Entries.size() == 1) {
    unpaddedType = Entries[0].Type;
  }
  return { coercionType, unpaddedType };
}
bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
  assert(Finished && "haven't yet finished lowering");
  // Empty types don't need to be passed indirectly.
  if (Entries.empty()) return false;
  // Avoid copying the array of types when there's just a single element.
  if (Entries.size() == 1) {
    return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(
                                                           Entries.back().Type,
                                                             asReturnValue);
  }
  SmallVector<llvm::Type*, 8> componentTys;
  componentTys.reserve(Entries.size());
  for (auto &entry : Entries) {
    componentTys.push_back(entry.Type);
  }
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
                                                           asReturnValue);
}
bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
                                     ArrayRef<llvm::Type*> componentTys,
                                     bool asReturnValue) {
  return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(componentTys,
                                                           asReturnValue);
}
CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
  // Currently always the size of an ordinary pointer.
  return CGM.getContext().toCharUnitsFromBits(
           CGM.getContext().getTargetInfo().getPointerWidth(0));
}
CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
  // For Swift's purposes, this is always just the store size of the type
  // rounded up to a power of 2.
  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
  if (!isPowerOf2(size)) {
    size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
  }
  assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
  return CharUnits::fromQuantity(size);
}
bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
                                   llvm::IntegerType *intTy) {
  auto size = intTy->getBitWidth();
  switch (size) {
  case 1:
  case 8:
  case 16:
  case 32:
  case 64:
    // Just assume that the above are always legal.
    return true;
  case 128:
    return CGM.getContext().getTargetInfo().hasInt128Type();
  default:
    return false;
  }
}
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                  llvm::VectorType *vectorTy) {
  return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
                           vectorTy->getNumElements());
}
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                  llvm::Type *eltTy, unsigned numElts) {
  assert(numElts > 1 && "illegal vector length");
  return getSwiftABIInfo(CGM)
           .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
}
std::pair<llvm::Type*, unsigned>
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
                                llvm::VectorType *vectorTy) {
  auto numElts = vectorTy->getNumElements();
  auto eltTy = vectorTy->getElementType();
  // Try to split the vector type in half.
  if (numElts >= 4 && isPowerOf2(numElts)) {
    if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
      return {llvm::VectorType::get(eltTy, numElts / 2), 2};
  }
  return {eltTy, numElts};
}
void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
                                   llvm::VectorType *origVectorTy,
                             llvm::SmallVectorImpl<llvm::Type*> &components) {
  // If it's already a legal vector type, use it.
  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
    components.push_back(origVectorTy);
    return;
  }
  // Try to split the vector into legal subvectors.
  auto numElts = origVectorTy->getNumElements();
  auto eltTy = origVectorTy->getElementType();
  assert(numElts != 1);
  // The largest size that we're still considering making subvectors of.
  // Always a power of 2.
  unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
  unsigned candidateNumElts = 1U << logCandidateNumElts;
  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
  // Minor optimization: don't check the legality of this exact size twice.
  if (candidateNumElts == numElts) {
    logCandidateNumElts--;
    candidateNumElts >>= 1;
  }
  CharUnits eltSize = (origVectorSize / numElts);
  CharUnits candidateSize = eltSize * candidateNumElts;
  // The sensibility of this algorithm relies on the fact that we never
  // have a legal non-power-of-2 vector size without having the power of 2
  // also be legal.
  while (logCandidateNumElts > 0) {
    assert(candidateNumElts == 1U << logCandidateNumElts);
    assert(candidateNumElts <= numElts);
    assert(candidateSize == eltSize * candidateNumElts);
    // Skip illegal vector sizes.
    if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
      logCandidateNumElts--;
      candidateNumElts /= 2;
      candidateSize /= 2;
      continue;
    }
    // Add the right number of vectors of this size.
    auto numVecs = numElts >> logCandidateNumElts;
    components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
    numElts -= (numVecs << logCandidateNumElts);
    if (numElts == 0) return;
    // It's possible that the number of elements remaining will be legal.
    // This can happen with e.g. <7 x float> when <3 x float> is legal.
    // This only needs to be separately checked if it's not a power of 2.
    if (numElts > 2 && !isPowerOf2(numElts) &&
        isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
      components.push_back(llvm::VectorType::get(eltTy, numElts));
      return;
    }
    // Bring vecSize down to something no larger than numElts.
    do {
      logCandidateNumElts--;
      candidateNumElts /= 2;
      candidateSize /= 2;
    } while (candidateNumElts > numElts);
  }
  // Otherwise, just append a bunch of individual elements.
  components.append(numElts, eltTy);
}
bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
                                         const RecordDecl *record) {
  // FIXME: should we not rely on the standard computation in Sema, just in
  // case we want to diverge from the platform ABI (e.g. on targets where
  // that uses the MSVC rule)?
  return !record->canPassInRegisters();
}
static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
                                       bool forReturn,
                                       CharUnits alignmentForIndirect) {
  if (lowering.empty()) {
    return ABIArgInfo::getIgnore();
  } else if (lowering.shouldPassIndirectly(forReturn)) {
    return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
  } else {
    auto types = lowering.getCoerceAndExpandTypes();
    return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
  }
}
static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
                               bool forReturn) {
  if (auto recordType = dyn_cast<RecordType>(type)) {
    auto record = recordType->getDecl();
    auto &layout = CGM.getContext().getASTRecordLayout(record);
    if (mustPassRecordIndirectly(CGM, record))
      return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
    SwiftAggLowering lowering(CGM);
    lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
    lowering.finish();
    return classifyExpandedType(lowering, forReturn, layout.getAlignment());
  }
  // Just assume that all of our target ABIs can support returning at least
  // two integer or floating-point values.
  if (isa<ComplexType>(type)) {
    return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
  }
  // Vector types may need to be legalized.
  if (isa<VectorType>(type)) {
    SwiftAggLowering lowering(CGM);
    lowering.addTypedData(type, CharUnits::Zero());
    lowering.finish();
    CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
    return classifyExpandedType(lowering, forReturn, alignment);
  }
  // Member pointer types need to be expanded, but it's a simple form of
  // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
  // true for this to work.
  // 'void' needs to be ignored.
  if (type->isVoidType()) {
    return ABIArgInfo::getIgnore();
  }
  // Everything else can be passed directly.
  return ABIArgInfo::getDirect();
}
ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
  return classifyType(CGM, type, /*forReturn*/ true);
}
ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
                                           CanQualType type) {
  return classifyType(CGM, type, /*forReturn*/ false);
}
void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
  auto &retInfo = FI.getReturnInfo();
  retInfo = classifyReturnType(CGM, FI.getReturnType());
  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
    auto &argInfo = FI.arg_begin()[i];
    argInfo.info = classifyArgumentType(CGM, argInfo.type);
  }
}
// Is swifterror lowered to a register by the target ABI.
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
  return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
}
 |