1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
|
//===-- IteratorChecker.cpp ---------------------------------------*- C++ -*--//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Defines a checker for using iterators outside their range (past end). Usage
// means here dereferencing, incrementing etc.
//
//===----------------------------------------------------------------------===//
//
// In the code, iterator can be represented as a:
// * type-I: typedef-ed pointer. Operations over such iterator, such as
// comparisons or increments, are modeled straightforwardly by the
// analyzer.
// * type-II: structure with its method bodies available. Operations over such
// iterator are inlined by the analyzer, and results of modeling
// these operations are exposing implementation details of the
// iterators, which is not necessarily helping.
// * type-III: completely opaque structure. Operations over such iterator are
// modeled conservatively, producing conjured symbols everywhere.
//
// To handle all these types in a common way we introduce a structure called
// IteratorPosition which is an abstraction of the position the iterator
// represents using symbolic expressions. The checker handles all the
// operations on this structure.
//
// Additionally, depending on the circumstances, operators of types II and III
// can be represented as:
// * type-IIa, type-IIIa: conjured structure symbols - when returned by value
// from conservatively evaluated methods such as
// `.begin()`.
// * type-IIb, type-IIIb: memory regions of iterator-typed objects, such as
// variables or temporaries, when the iterator object is
// currently treated as an lvalue.
// * type-IIc, type-IIIc: compound values of iterator-typed objects, when the
// iterator object is treated as an rvalue taken of a
// particular lvalue, eg. a copy of "type-a" iterator
// object, or an iterator that existed before the
// analysis has started.
//
// To handle any of these three different representations stored in an SVal we
// use setter and getters functions which separate the three cases. To store
// them we use a pointer union of symbol and memory region.
//
// The checker works the following way: We record the begin and the
// past-end iterator for all containers whenever their `.begin()` and `.end()`
// are called. Since the Constraint Manager cannot handle such SVals we need
// to take over its role. We post-check equality and non-equality comparisons
// and record that the two sides are equal if we are in the 'equal' branch
// (true-branch for `==` and false-branch for `!=`).
//
// In case of type-I or type-II iterators we get a concrete integer as a result
// of the comparison (1 or 0) but in case of type-III we only get a Symbol. In
// this latter case we record the symbol and reload it in evalAssume() and do
// the propagation there. We also handle (maybe double) negated comparisons
// which are represented in the form of (x == 0 or x != 0) where x is the
// comparison itself.
//
// Since `SimpleConstraintManager` cannot handle complex symbolic expressions
// we only use expressions of the format S, S+n or S-n for iterator positions
// where S is a conjured symbol and n is an unsigned concrete integer. When
// making an assumption e.g. `S1 + n == S2 + m` we store `S1 - S2 == m - n` as
// a constraint which we later retrieve when doing an actual comparison.
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
using namespace clang;
using namespace ento;
namespace {
// Abstract position of an iterator. This helps to handle all three kinds
// of operators in a common way by using a symbolic position.
struct IteratorPosition {
private:
// Container the iterator belongs to
const MemRegion *Cont;
// Abstract offset
const SymbolRef Offset;
IteratorPosition(const MemRegion *C, SymbolRef Of)
: Cont(C), Offset(Of) {}
public:
const MemRegion *getContainer() const { return Cont; }
SymbolRef getOffset() const { return Offset; }
static IteratorPosition getPosition(const MemRegion *C, SymbolRef Of) {
return IteratorPosition(C, Of);
}
IteratorPosition setTo(SymbolRef NewOf) const {
return IteratorPosition(Cont, NewOf);
}
bool operator==(const IteratorPosition &X) const {
return Cont == X.Cont && Offset == X.Offset;
}
bool operator!=(const IteratorPosition &X) const {
return Cont != X.Cont || Offset != X.Offset;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddPointer(Cont);
ID.Add(Offset);
}
};
typedef llvm::PointerUnion<const MemRegion *, SymbolRef> RegionOrSymbol;
// Structure to record the symbolic begin and end position of a container
struct ContainerData {
private:
const SymbolRef Begin, End;
ContainerData(SymbolRef B, SymbolRef E) : Begin(B), End(E) {}
public:
static ContainerData fromBegin(SymbolRef B) {
return ContainerData(B, nullptr);
}
static ContainerData fromEnd(SymbolRef E) {
return ContainerData(nullptr, E);
}
SymbolRef getBegin() const { return Begin; }
SymbolRef getEnd() const { return End; }
ContainerData newBegin(SymbolRef B) const { return ContainerData(B, End); }
ContainerData newEnd(SymbolRef E) const { return ContainerData(Begin, E); }
bool operator==(const ContainerData &X) const {
return Begin == X.Begin && End == X.End;
}
bool operator!=(const ContainerData &X) const {
return Begin != X.Begin || End != X.End;
}
void Profile(llvm::FoldingSetNodeID &ID) const {
ID.Add(Begin);
ID.Add(End);
}
};
// Structure fo recording iterator comparisons. We needed to retrieve the
// original comparison expression in assumptions.
struct IteratorComparison {
private:
RegionOrSymbol Left, Right;
bool Equality;
public:
IteratorComparison(RegionOrSymbol L, RegionOrSymbol R, bool Eq)
: Left(L), Right(R), Equality(Eq) {}
RegionOrSymbol getLeft() const { return Left; }
RegionOrSymbol getRight() const { return Right; }
bool isEquality() const { return Equality; }
bool operator==(const IteratorComparison &X) const {
return Left == X.Left && Right == X.Right && Equality == X.Equality;
}
bool operator!=(const IteratorComparison &X) const {
return Left != X.Left || Right != X.Right || Equality != X.Equality;
}
void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(Equality); }
};
class IteratorChecker
: public Checker<check::PreCall, check::PostCall,
check::PreStmt<CXXOperatorCallExpr>,
check::PostStmt<MaterializeTemporaryExpr>,
check::LiveSymbols, check::DeadSymbols,
eval::Assume> {
std::unique_ptr<BugType> OutOfRangeBugType;
void handleComparison(CheckerContext &C, const SVal &RetVal, const SVal &LVal,
const SVal &RVal, OverloadedOperatorKind Op) const;
void verifyDereference(CheckerContext &C, const SVal &Val) const;
void handleIncrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
bool Postfix) const;
void handleDecrement(CheckerContext &C, const SVal &RetVal, const SVal &Iter,
bool Postfix) const;
void handleRandomIncrOrDecr(CheckerContext &C, OverloadedOperatorKind Op,
const SVal &RetVal, const SVal &LHS,
const SVal &RHS) const;
void handleBegin(CheckerContext &C, const Expr *CE, const SVal &RetVal,
const SVal &Cont) const;
void handleEnd(CheckerContext &C, const Expr *CE, const SVal &RetVal,
const SVal &Cont) const;
void assignToContainer(CheckerContext &C, const Expr *CE, const SVal &RetVal,
const MemRegion *Cont) const;
void verifyRandomIncrOrDecr(CheckerContext &C, OverloadedOperatorKind Op,
const SVal &RetVal, const SVal &LHS,
const SVal &RHS) const;
void reportOutOfRangeBug(const StringRef &Message, const SVal &Val,
CheckerContext &C, ExplodedNode *ErrNode) const;
public:
IteratorChecker();
enum CheckKind {
CK_IteratorRangeChecker,
CK_NumCheckKinds
};
DefaultBool ChecksEnabled[CK_NumCheckKinds];
CheckName CheckNames[CK_NumCheckKinds];
void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
void checkPreStmt(const CXXOperatorCallExpr *COCE, CheckerContext &C) const;
void checkPostStmt(const MaterializeTemporaryExpr *MTE,
CheckerContext &C) const;
void checkLiveSymbols(ProgramStateRef State, SymbolReaper &SR) const;
void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond,
bool Assumption) const;
};
} // namespace
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorSymbolMap, SymbolRef, IteratorPosition)
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorRegionMap, const MemRegion *,
IteratorPosition)
REGISTER_MAP_WITH_PROGRAMSTATE(ContainerMap, const MemRegion *, ContainerData)
REGISTER_MAP_WITH_PROGRAMSTATE(IteratorComparisonMap, const SymExpr *,
IteratorComparison)
namespace {
bool isIteratorType(const QualType &Type);
bool isIterator(const CXXRecordDecl *CRD);
bool isBeginCall(const FunctionDecl *Func);
bool isEndCall(const FunctionDecl *Func);
bool isSimpleComparisonOperator(OverloadedOperatorKind OK);
bool isDereferenceOperator(OverloadedOperatorKind OK);
bool isIncrementOperator(OverloadedOperatorKind OK);
bool isDecrementOperator(OverloadedOperatorKind OK);
bool isRandomIncrOrDecrOperator(OverloadedOperatorKind OK);
BinaryOperator::Opcode getOpcode(const SymExpr *SE);
const RegionOrSymbol getRegionOrSymbol(const SVal &Val);
const ProgramStateRef processComparison(ProgramStateRef State,
RegionOrSymbol LVal,
RegionOrSymbol RVal, bool Equal);
const ProgramStateRef saveComparison(ProgramStateRef State,
const SymExpr *Condition, const SVal &LVal,
const SVal &RVal, bool Eq);
const IteratorComparison *loadComparison(ProgramStateRef State,
const SymExpr *Condition);
SymbolRef getContainerBegin(ProgramStateRef State, const MemRegion *Cont);
SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont);
ProgramStateRef createContainerBegin(ProgramStateRef State,
const MemRegion *Cont,
const SymbolRef Sym);
ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
const SymbolRef Sym);
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
const SVal &Val);
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym);
ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
const IteratorPosition &Pos);
ProgramStateRef setIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos);
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val);
ProgramStateRef adjustIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos, bool Equal);
ProgramStateRef relateIteratorPositions(ProgramStateRef State,
const IteratorPosition &Pos1,
const IteratorPosition &Pos2,
bool Equal);
const ContainerData *getContainerData(ProgramStateRef State,
const MemRegion *Cont);
ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
const ContainerData &CData);
bool hasLiveIterators(ProgramStateRef State, const MemRegion *Cont);
bool isOutOfRange(ProgramStateRef State, const IteratorPosition &Pos);
bool isZero(ProgramStateRef State, const NonLoc &Val);
} // namespace
IteratorChecker::IteratorChecker() {
OutOfRangeBugType.reset(
new BugType(this, "Iterator out of range", "Misuse of STL APIs"));
OutOfRangeBugType->setSuppressOnSink(true);
}
void IteratorChecker::checkPreCall(const CallEvent &Call,
CheckerContext &C) const {
// Check for out of range access
const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!Func)
return;
if (Func->isOverloadedOperator()) {
if (ChecksEnabled[CK_IteratorRangeChecker] &&
isRandomIncrOrDecrOperator(Func->getOverloadedOperator())) {
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
// Check for out-of-range incrementions and decrementions
if (Call.getNumArgs() >= 1) {
verifyRandomIncrOrDecr(C, Func->getOverloadedOperator(),
Call.getReturnValue(),
InstCall->getCXXThisVal(), Call.getArgSVal(0));
}
} else {
if (Call.getNumArgs() >= 2) {
verifyRandomIncrOrDecr(C, Func->getOverloadedOperator(),
Call.getReturnValue(), Call.getArgSVal(0),
Call.getArgSVal(1));
}
}
} else if (ChecksEnabled[CK_IteratorRangeChecker] &&
isDereferenceOperator(Func->getOverloadedOperator())) {
// Check for dereference of out-of-range iterators
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
verifyDereference(C, InstCall->getCXXThisVal());
} else {
verifyDereference(C, Call.getArgSVal(0));
}
}
}
}
void IteratorChecker::checkPostCall(const CallEvent &Call,
CheckerContext &C) const {
// Record new iterator positions and iterator position changes
const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!Func)
return;
if (Func->isOverloadedOperator()) {
const auto Op = Func->getOverloadedOperator();
if (isSimpleComparisonOperator(Op)) {
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
handleComparison(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
Call.getArgSVal(0), Op);
} else {
handleComparison(C, Call.getReturnValue(), Call.getArgSVal(0),
Call.getArgSVal(1), Op);
}
} else if (isRandomIncrOrDecrOperator(Func->getOverloadedOperator())) {
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
if (Call.getNumArgs() >= 1) {
handleRandomIncrOrDecr(C, Func->getOverloadedOperator(),
Call.getReturnValue(),
InstCall->getCXXThisVal(), Call.getArgSVal(0));
}
} else {
if (Call.getNumArgs() >= 2) {
handleRandomIncrOrDecr(C, Func->getOverloadedOperator(),
Call.getReturnValue(), Call.getArgSVal(0),
Call.getArgSVal(1));
}
}
} else if (isIncrementOperator(Func->getOverloadedOperator())) {
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
handleIncrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
Call.getNumArgs());
} else {
handleIncrement(C, Call.getReturnValue(), Call.getArgSVal(0),
Call.getNumArgs());
}
} else if (isDecrementOperator(Func->getOverloadedOperator())) {
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
handleDecrement(C, Call.getReturnValue(), InstCall->getCXXThisVal(),
Call.getNumArgs());
} else {
handleDecrement(C, Call.getReturnValue(), Call.getArgSVal(0),
Call.getNumArgs());
}
}
} else {
const auto *OrigExpr = Call.getOriginExpr();
if (!OrigExpr)
return;
if (!isIteratorType(Call.getResultType()))
return;
auto State = C.getState();
// Already bound to container?
if (getIteratorPosition(State, Call.getReturnValue()))
return;
if (const auto *InstCall = dyn_cast<CXXInstanceCall>(&Call)) {
if (isBeginCall(Func)) {
handleBegin(C, OrigExpr, Call.getReturnValue(),
InstCall->getCXXThisVal());
return;
}
if (isEndCall(Func)) {
handleEnd(C, OrigExpr, Call.getReturnValue(),
InstCall->getCXXThisVal());
return;
}
}
// Copy-like and move constructors
if (isa<CXXConstructorCall>(&Call) && Call.getNumArgs() == 1) {
if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(0))) {
State = setIteratorPosition(State, Call.getReturnValue(), *Pos);
if (cast<CXXConstructorDecl>(Func)->isMoveConstructor()) {
State = removeIteratorPosition(State, Call.getArgSVal(0));
}
C.addTransition(State);
return;
}
}
// Assumption: if return value is an iterator which is not yet bound to a
// container, then look for the first iterator argument, and
// bind the return value to the same container. This approach
// works for STL algorithms.
// FIXME: Add a more conservative mode
for (unsigned i = 0; i < Call.getNumArgs(); ++i) {
if (isIteratorType(Call.getArgExpr(i)->getType())) {
if (const auto *Pos = getIteratorPosition(State, Call.getArgSVal(i))) {
assignToContainer(C, OrigExpr, Call.getReturnValue(),
Pos->getContainer());
return;
}
}
}
}
}
void IteratorChecker::checkPreStmt(const CXXOperatorCallExpr *COCE,
CheckerContext &C) const {
const auto *ThisExpr = COCE->getArg(0);
auto State = C.getState();
const auto *LCtx = C.getLocationContext();
const auto CurrentThis = State->getSVal(ThisExpr, LCtx);
if (const auto *Reg = CurrentThis.getAsRegion()) {
if (!Reg->getAs<CXXTempObjectRegion>())
return;
const auto OldState = C.getPredecessor()->getFirstPred()->getState();
const auto OldThis = OldState->getSVal(ThisExpr, LCtx);
// FIXME: This solution is unreliable. It may happen that another checker
// subscribes to the pre-statement check of `CXXOperatorCallExpr`
// and adds a transition before us. The proper fix is to make the
// CFG provide a `ConstructionContext` for the `CXXOperatorCallExpr`,
// which would turn the corresponding `CFGStmt` element into a
// `CFGCXXRecordTypedCall` element, which will allow `ExprEngine` to
// foresee that the `begin()`/`end()` call constructs the object
// directly in the temporary region that `CXXOperatorCallExpr` takes
// as its implicit object argument.
const auto *Pos = getIteratorPosition(OldState, OldThis);
if (!Pos)
return;
State = setIteratorPosition(State, CurrentThis, *Pos);
C.addTransition(State);
}
}
void IteratorChecker::checkPostStmt(const MaterializeTemporaryExpr *MTE,
CheckerContext &C) const {
/* Transfer iterator state to temporary objects */
auto State = C.getState();
const auto *Pos =
getIteratorPosition(State, C.getSVal(MTE->GetTemporaryExpr()));
if (!Pos)
return;
State = setIteratorPosition(State, C.getSVal(MTE), *Pos);
C.addTransition(State);
}
void IteratorChecker::checkLiveSymbols(ProgramStateRef State,
SymbolReaper &SR) const {
// Keep symbolic expressions of iterator positions, container begins and ends
// alive
auto RegionMap = State->get<IteratorRegionMap>();
for (const auto Reg : RegionMap) {
const auto Offset = Reg.second.getOffset();
for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
if (isa<SymbolData>(*i))
SR.markLive(*i);
}
auto SymbolMap = State->get<IteratorSymbolMap>();
for (const auto Sym : SymbolMap) {
const auto Offset = Sym.second.getOffset();
for (auto i = Offset->symbol_begin(); i != Offset->symbol_end(); ++i)
if (isa<SymbolData>(*i))
SR.markLive(*i);
}
auto ContMap = State->get<ContainerMap>();
for (const auto Cont : ContMap) {
const auto CData = Cont.second;
if (CData.getBegin()) {
SR.markLive(CData.getBegin());
}
if (CData.getEnd()) {
SR.markLive(CData.getEnd());
}
}
}
void IteratorChecker::checkDeadSymbols(SymbolReaper &SR,
CheckerContext &C) const {
// Cleanup
auto State = C.getState();
auto RegionMap = State->get<IteratorRegionMap>();
for (const auto Reg : RegionMap) {
if (!SR.isLiveRegion(Reg.first)) {
State = State->remove<IteratorRegionMap>(Reg.first);
}
}
auto SymbolMap = State->get<IteratorSymbolMap>();
for (const auto Sym : SymbolMap) {
if (!SR.isLive(Sym.first)) {
State = State->remove<IteratorSymbolMap>(Sym.first);
}
}
auto ContMap = State->get<ContainerMap>();
for (const auto Cont : ContMap) {
if (!SR.isLiveRegion(Cont.first)) {
// We must keep the container data while it has live iterators to be able
// to compare them to the begin and the end of the container.
if (!hasLiveIterators(State, Cont.first)) {
State = State->remove<ContainerMap>(Cont.first);
}
}
}
auto ComparisonMap = State->get<IteratorComparisonMap>();
for (const auto Comp : ComparisonMap) {
if (!SR.isLive(Comp.first)) {
State = State->remove<IteratorComparisonMap>(Comp.first);
}
}
C.addTransition(State);
}
ProgramStateRef IteratorChecker::evalAssume(ProgramStateRef State, SVal Cond,
bool Assumption) const {
// Load recorded comparison and transfer iterator state between sides
// according to comparison operator and assumption
const auto *SE = Cond.getAsSymExpr();
if (!SE)
return State;
auto Opc = getOpcode(SE);
if (Opc != BO_EQ && Opc != BO_NE)
return State;
bool Negated = false;
const auto *Comp = loadComparison(State, SE);
if (!Comp) {
// Try negated comparison, which is a SymExpr to 0 integer comparison
const auto *SIE = dyn_cast<SymIntExpr>(SE);
if (!SIE)
return State;
if (SIE->getRHS() != 0)
return State;
SE = SIE->getLHS();
Negated = SIE->getOpcode() == BO_EQ; // Equal to zero means negation
Opc = getOpcode(SE);
if (Opc != BO_EQ && Opc != BO_NE)
return State;
Comp = loadComparison(State, SE);
if (!Comp)
return State;
}
return processComparison(State, Comp->getLeft(), Comp->getRight(),
(Comp->isEquality() == Assumption) != Negated);
}
void IteratorChecker::handleComparison(CheckerContext &C, const SVal &RetVal,
const SVal &LVal, const SVal &RVal,
OverloadedOperatorKind Op) const {
// Record the operands and the operator of the comparison for the next
// evalAssume, if the result is a symbolic expression. If it is a concrete
// value (only one branch is possible), then transfer the state between
// the operands according to the operator and the result
auto State = C.getState();
if (const auto *Condition = RetVal.getAsSymbolicExpression()) {
const auto *LPos = getIteratorPosition(State, LVal);
const auto *RPos = getIteratorPosition(State, RVal);
if (!LPos && !RPos)
return;
State = saveComparison(State, Condition, LVal, RVal, Op == OO_EqualEqual);
C.addTransition(State);
} else if (const auto TruthVal = RetVal.getAs<nonloc::ConcreteInt>()) {
if ((State = processComparison(
State, getRegionOrSymbol(LVal), getRegionOrSymbol(RVal),
(Op == OO_EqualEqual) == (TruthVal->getValue() != 0)))) {
C.addTransition(State);
} else {
C.generateSink(State, C.getPredecessor());
}
}
}
void IteratorChecker::verifyDereference(CheckerContext &C,
const SVal &Val) const {
auto State = C.getState();
const auto *Pos = getIteratorPosition(State, Val);
if (Pos && isOutOfRange(State, *Pos)) {
// If I do not put a tag here, some range tests will fail
static CheckerProgramPointTag Tag("IteratorRangeChecker",
"IteratorOutOfRange");
auto *N = C.generateNonFatalErrorNode(State, &Tag);
if (!N)
return;
reportOutOfRangeBug("Iterator accessed outside of its range.", Val, C, N);
}
}
void IteratorChecker::handleIncrement(CheckerContext &C, const SVal &RetVal,
const SVal &Iter, bool Postfix) const {
// Increment the symbolic expressions which represents the position of the
// iterator
auto State = C.getState();
const auto *Pos = getIteratorPosition(State, Iter);
if (Pos) {
auto &SymMgr = C.getSymbolManager();
auto &BVF = SymMgr.getBasicVals();
auto &SVB = C.getSValBuilder();
const auto OldOffset = Pos->getOffset();
auto NewOffset =
SVB.evalBinOp(State, BO_Add,
nonloc::SymbolVal(OldOffset),
nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
SymMgr.getType(OldOffset)).getAsSymbol();
auto NewPos = Pos->setTo(NewOffset);
State = setIteratorPosition(State, Iter, NewPos);
State = setIteratorPosition(State, RetVal, Postfix ? *Pos : NewPos);
C.addTransition(State);
}
}
void IteratorChecker::handleDecrement(CheckerContext &C, const SVal &RetVal,
const SVal &Iter, bool Postfix) const {
// Decrement the symbolic expressions which represents the position of the
// iterator
auto State = C.getState();
const auto *Pos = getIteratorPosition(State, Iter);
if (Pos) {
auto &SymMgr = C.getSymbolManager();
auto &BVF = SymMgr.getBasicVals();
auto &SVB = C.getSValBuilder();
const auto OldOffset = Pos->getOffset();
auto NewOffset =
SVB.evalBinOp(State, BO_Sub,
nonloc::SymbolVal(OldOffset),
nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(1))),
SymMgr.getType(OldOffset)).getAsSymbol();
auto NewPos = Pos->setTo(NewOffset);
State = setIteratorPosition(State, Iter, NewPos);
State = setIteratorPosition(State, RetVal, Postfix ? *Pos : NewPos);
C.addTransition(State);
}
}
// This function tells the analyzer's engine that symbols produced by our
// checker, most notably iterator positions, are relatively small.
// A distance between items in the container should not be very large.
// By assuming that it is within around 1/8 of the address space,
// we can help the analyzer perform operations on these symbols
// without being afraid of integer overflows.
// FIXME: Should we provide it as an API, so that all checkers could use it?
static ProgramStateRef assumeNoOverflow(ProgramStateRef State, SymbolRef Sym,
long Scale) {
SValBuilder &SVB = State->getStateManager().getSValBuilder();
BasicValueFactory &BV = SVB.getBasicValueFactory();
QualType T = Sym->getType();
assert(T->isSignedIntegerOrEnumerationType());
APSIntType AT = BV.getAPSIntType(T);
ProgramStateRef NewState = State;
llvm::APSInt Max = AT.getMaxValue() / AT.getValue(Scale);
SVal IsCappedFromAbove =
SVB.evalBinOpNN(State, BO_LE, nonloc::SymbolVal(Sym),
nonloc::ConcreteInt(Max), SVB.getConditionType());
if (auto DV = IsCappedFromAbove.getAs<DefinedSVal>()) {
NewState = NewState->assume(*DV, true);
if (!NewState)
return State;
}
llvm::APSInt Min = -Max;
SVal IsCappedFromBelow =
SVB.evalBinOpNN(State, BO_GE, nonloc::SymbolVal(Sym),
nonloc::ConcreteInt(Min), SVB.getConditionType());
if (auto DV = IsCappedFromBelow.getAs<DefinedSVal>()) {
NewState = NewState->assume(*DV, true);
if (!NewState)
return State;
}
return NewState;
}
void IteratorChecker::handleRandomIncrOrDecr(CheckerContext &C,
OverloadedOperatorKind Op,
const SVal &RetVal,
const SVal &LHS,
const SVal &RHS) const {
// Increment or decrement the symbolic expressions which represents the
// position of the iterator
auto State = C.getState();
const auto *Pos = getIteratorPosition(State, LHS);
if (!Pos)
return;
const auto *value = &RHS;
if (auto loc = RHS.getAs<Loc>()) {
const auto val = State->getRawSVal(*loc);
value = &val;
}
auto &SymMgr = C.getSymbolManager();
auto &SVB = C.getSValBuilder();
auto BinOp = (Op == OO_Plus || Op == OO_PlusEqual) ? BO_Add : BO_Sub;
const auto OldOffset = Pos->getOffset();
SymbolRef NewOffset;
if (const auto intValue = value->getAs<nonloc::ConcreteInt>()) {
// For concrete integers we can calculate the new position
NewOffset = SVB.evalBinOp(State, BinOp, nonloc::SymbolVal(OldOffset),
*intValue,
SymMgr.getType(OldOffset)).getAsSymbol();
} else {
// For other symbols create a new symbol to keep expressions simple
const auto &LCtx = C.getLocationContext();
NewOffset = SymMgr.conjureSymbol(nullptr, LCtx, SymMgr.getType(OldOffset),
C.blockCount());
State = assumeNoOverflow(State, NewOffset, 4);
}
auto NewPos = Pos->setTo(NewOffset);
auto &TgtVal = (Op == OO_PlusEqual || Op == OO_MinusEqual) ? LHS : RetVal;
State = setIteratorPosition(State, TgtVal, NewPos);
C.addTransition(State);
}
void IteratorChecker::verifyRandomIncrOrDecr(CheckerContext &C,
OverloadedOperatorKind Op,
const SVal &RetVal,
const SVal &LHS,
const SVal &RHS) const {
auto State = C.getState();
// If the iterator is initially inside its range, then the operation is valid
const auto *Pos = getIteratorPosition(State, LHS);
if (!Pos || !isOutOfRange(State, *Pos))
return;
auto value = RHS;
if (auto loc = RHS.getAs<Loc>()) {
value = State->getRawSVal(*loc);
}
// Incremention or decremention by 0 is never bug
if (isZero(State, value.castAs<NonLoc>()))
return;
auto &SymMgr = C.getSymbolManager();
auto &SVB = C.getSValBuilder();
auto BinOp = (Op == OO_Plus || Op == OO_PlusEqual) ? BO_Add : BO_Sub;
const auto OldOffset = Pos->getOffset();
const auto intValue = value.getAs<nonloc::ConcreteInt>();
if (!intValue)
return;
auto NewOffset = SVB.evalBinOp(State, BinOp, nonloc::SymbolVal(OldOffset),
*intValue,
SymMgr.getType(OldOffset)).getAsSymbol();
auto NewPos = Pos->setTo(NewOffset);
// If out of range, the only valid operation is to step into the range
if (isOutOfRange(State, NewPos)) {
auto *N = C.generateNonFatalErrorNode(State);
if (!N)
return;
reportOutOfRangeBug("Iterator accessed past its end.", LHS, C, N);
}
}
void IteratorChecker::handleBegin(CheckerContext &C, const Expr *CE,
const SVal &RetVal, const SVal &Cont) const {
const auto *ContReg = Cont.getAsRegion();
if (!ContReg)
return;
while (const auto *CBOR = ContReg->getAs<CXXBaseObjectRegion>()) {
ContReg = CBOR->getSuperRegion();
}
// If the container already has a begin symbol then use it. Otherwise first
// create a new one.
auto State = C.getState();
auto BeginSym = getContainerBegin(State, ContReg);
if (!BeginSym) {
auto &SymMgr = C.getSymbolManager();
BeginSym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
C.getASTContext().LongTy, C.blockCount());
State = assumeNoOverflow(State, BeginSym, 4);
State = createContainerBegin(State, ContReg, BeginSym);
}
State = setIteratorPosition(State, RetVal,
IteratorPosition::getPosition(ContReg, BeginSym));
C.addTransition(State);
}
void IteratorChecker::handleEnd(CheckerContext &C, const Expr *CE,
const SVal &RetVal, const SVal &Cont) const {
const auto *ContReg = Cont.getAsRegion();
if (!ContReg)
return;
while (const auto *CBOR = ContReg->getAs<CXXBaseObjectRegion>()) {
ContReg = CBOR->getSuperRegion();
}
// If the container already has an end symbol then use it. Otherwise first
// create a new one.
auto State = C.getState();
auto EndSym = getContainerEnd(State, ContReg);
if (!EndSym) {
auto &SymMgr = C.getSymbolManager();
EndSym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
C.getASTContext().LongTy, C.blockCount());
State = assumeNoOverflow(State, EndSym, 4);
State = createContainerEnd(State, ContReg, EndSym);
}
State = setIteratorPosition(State, RetVal,
IteratorPosition::getPosition(ContReg, EndSym));
C.addTransition(State);
}
void IteratorChecker::assignToContainer(CheckerContext &C, const Expr *CE,
const SVal &RetVal,
const MemRegion *Cont) const {
while (const auto *CBOR = Cont->getAs<CXXBaseObjectRegion>()) {
Cont = CBOR->getSuperRegion();
}
auto State = C.getState();
auto &SymMgr = C.getSymbolManager();
auto Sym = SymMgr.conjureSymbol(CE, C.getLocationContext(),
C.getASTContext().LongTy, C.blockCount());
State = assumeNoOverflow(State, Sym, 4);
State = setIteratorPosition(State, RetVal,
IteratorPosition::getPosition(Cont, Sym));
C.addTransition(State);
}
void IteratorChecker::reportOutOfRangeBug(const StringRef &Message,
const SVal &Val, CheckerContext &C,
ExplodedNode *ErrNode) const {
auto R = llvm::make_unique<BugReport>(*OutOfRangeBugType, Message, ErrNode);
R->markInteresting(Val);
C.emitReport(std::move(R));
}
namespace {
bool isLess(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
bool isGreaterOrEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2);
bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
BinaryOperator::Opcode Opc);
bool compare(ProgramStateRef State, NonLoc NL1, NonLoc NL2,
BinaryOperator::Opcode Opc);
bool isIteratorType(const QualType &Type) {
if (Type->isPointerType())
return true;
const auto *CRD = Type->getUnqualifiedDesugaredType()->getAsCXXRecordDecl();
return isIterator(CRD);
}
bool isIterator(const CXXRecordDecl *CRD) {
if (!CRD)
return false;
const auto Name = CRD->getName();
if (!(Name.endswith_lower("iterator") || Name.endswith_lower("iter") ||
Name.endswith_lower("it")))
return false;
bool HasCopyCtor = false, HasCopyAssign = true, HasDtor = false,
HasPreIncrOp = false, HasPostIncrOp = false, HasDerefOp = false;
for (const auto *Method : CRD->methods()) {
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Method)) {
if (Ctor->isCopyConstructor()) {
HasCopyCtor = !Ctor->isDeleted() && Ctor->getAccess() == AS_public;
}
continue;
}
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Method)) {
HasDtor = !Dtor->isDeleted() && Dtor->getAccess() == AS_public;
continue;
}
if (Method->isCopyAssignmentOperator()) {
HasCopyAssign = !Method->isDeleted() && Method->getAccess() == AS_public;
continue;
}
if (!Method->isOverloadedOperator())
continue;
const auto OPK = Method->getOverloadedOperator();
if (OPK == OO_PlusPlus) {
HasPreIncrOp = HasPreIncrOp || (Method->getNumParams() == 0);
HasPostIncrOp = HasPostIncrOp || (Method->getNumParams() == 1);
continue;
}
if (OPK == OO_Star) {
HasDerefOp = (Method->getNumParams() == 0);
continue;
}
}
return HasCopyCtor && HasCopyAssign && HasDtor && HasPreIncrOp &&
HasPostIncrOp && HasDerefOp;
}
bool isBeginCall(const FunctionDecl *Func) {
const auto *IdInfo = Func->getIdentifier();
if (!IdInfo)
return false;
return IdInfo->getName().endswith_lower("begin");
}
bool isEndCall(const FunctionDecl *Func) {
const auto *IdInfo = Func->getIdentifier();
if (!IdInfo)
return false;
return IdInfo->getName().endswith_lower("end");
}
bool isSimpleComparisonOperator(OverloadedOperatorKind OK) {
return OK == OO_EqualEqual || OK == OO_ExclaimEqual;
}
bool isDereferenceOperator(OverloadedOperatorKind OK) {
return OK == OO_Star || OK == OO_Arrow || OK == OO_ArrowStar ||
OK == OO_Subscript;
}
bool isIncrementOperator(OverloadedOperatorKind OK) {
return OK == OO_PlusPlus;
}
bool isDecrementOperator(OverloadedOperatorKind OK) {
return OK == OO_MinusMinus;
}
bool isRandomIncrOrDecrOperator(OverloadedOperatorKind OK) {
return OK == OO_Plus || OK == OO_PlusEqual || OK == OO_Minus ||
OK == OO_MinusEqual;
}
BinaryOperator::Opcode getOpcode(const SymExpr *SE) {
if (const auto *BSE = dyn_cast<BinarySymExpr>(SE)) {
return BSE->getOpcode();
} else if (const auto *SC = dyn_cast<SymbolConjured>(SE)) {
const auto *COE = dyn_cast_or_null<CXXOperatorCallExpr>(SC->getStmt());
if (!COE)
return BO_Comma; // Extremal value, neither EQ nor NE
if (COE->getOperator() == OO_EqualEqual) {
return BO_EQ;
} else if (COE->getOperator() == OO_ExclaimEqual) {
return BO_NE;
}
return BO_Comma; // Extremal value, neither EQ nor NE
}
return BO_Comma; // Extremal value, neither EQ nor NE
}
const RegionOrSymbol getRegionOrSymbol(const SVal &Val) {
if (const auto Reg = Val.getAsRegion()) {
return Reg;
} else if (const auto Sym = Val.getAsSymbol()) {
return Sym;
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return LCVal->getRegion();
}
return RegionOrSymbol();
}
const ProgramStateRef processComparison(ProgramStateRef State,
RegionOrSymbol LVal,
RegionOrSymbol RVal, bool Equal) {
const auto *LPos = getIteratorPosition(State, LVal);
const auto *RPos = getIteratorPosition(State, RVal);
if (LPos && !RPos) {
State = adjustIteratorPosition(State, RVal, *LPos, Equal);
} else if (!LPos && RPos) {
State = adjustIteratorPosition(State, LVal, *RPos, Equal);
} else if (LPos && RPos) {
State = relateIteratorPositions(State, *LPos, *RPos, Equal);
}
return State;
}
const ProgramStateRef saveComparison(ProgramStateRef State,
const SymExpr *Condition, const SVal &LVal,
const SVal &RVal, bool Eq) {
const auto Left = getRegionOrSymbol(LVal);
const auto Right = getRegionOrSymbol(RVal);
if (!Left || !Right)
return State;
return State->set<IteratorComparisonMap>(Condition,
IteratorComparison(Left, Right, Eq));
}
const IteratorComparison *loadComparison(ProgramStateRef State,
const SymExpr *Condition) {
return State->get<IteratorComparisonMap>(Condition);
}
SymbolRef getContainerBegin(ProgramStateRef State, const MemRegion *Cont) {
const auto *CDataPtr = getContainerData(State, Cont);
if (!CDataPtr)
return nullptr;
return CDataPtr->getBegin();
}
SymbolRef getContainerEnd(ProgramStateRef State, const MemRegion *Cont) {
const auto *CDataPtr = getContainerData(State, Cont);
if (!CDataPtr)
return nullptr;
return CDataPtr->getEnd();
}
ProgramStateRef createContainerBegin(ProgramStateRef State,
const MemRegion *Cont,
const SymbolRef Sym) {
// Only create if it does not exist
const auto *CDataPtr = getContainerData(State, Cont);
if (CDataPtr) {
if (CDataPtr->getBegin()) {
return State;
}
const auto CData = CDataPtr->newBegin(Sym);
return setContainerData(State, Cont, CData);
}
const auto CData = ContainerData::fromBegin(Sym);
return setContainerData(State, Cont, CData);
}
ProgramStateRef createContainerEnd(ProgramStateRef State, const MemRegion *Cont,
const SymbolRef Sym) {
// Only create if it does not exist
const auto *CDataPtr = getContainerData(State, Cont);
if (CDataPtr) {
if (CDataPtr->getEnd()) {
return State;
}
const auto CData = CDataPtr->newEnd(Sym);
return setContainerData(State, Cont, CData);
}
const auto CData = ContainerData::fromEnd(Sym);
return setContainerData(State, Cont, CData);
}
const ContainerData *getContainerData(ProgramStateRef State,
const MemRegion *Cont) {
return State->get<ContainerMap>(Cont);
}
ProgramStateRef setContainerData(ProgramStateRef State, const MemRegion *Cont,
const ContainerData &CData) {
return State->set<ContainerMap>(Cont, CData);
}
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
const SVal &Val) {
if (const auto Reg = Val.getAsRegion()) {
return State->get<IteratorRegionMap>(Reg);
} else if (const auto Sym = Val.getAsSymbol()) {
return State->get<IteratorSymbolMap>(Sym);
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return State->get<IteratorRegionMap>(LCVal->getRegion());
}
return nullptr;
}
const IteratorPosition *getIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym) {
if (RegOrSym.is<const MemRegion *>()) {
return State->get<IteratorRegionMap>(RegOrSym.get<const MemRegion *>());
} else if (RegOrSym.is<SymbolRef>()) {
return State->get<IteratorSymbolMap>(RegOrSym.get<SymbolRef>());
}
return nullptr;
}
ProgramStateRef setIteratorPosition(ProgramStateRef State, const SVal &Val,
const IteratorPosition &Pos) {
if (const auto Reg = Val.getAsRegion()) {
return State->set<IteratorRegionMap>(Reg, Pos);
} else if (const auto Sym = Val.getAsSymbol()) {
return State->set<IteratorSymbolMap>(Sym, Pos);
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return State->set<IteratorRegionMap>(LCVal->getRegion(), Pos);
}
return nullptr;
}
ProgramStateRef setIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos) {
if (RegOrSym.is<const MemRegion *>()) {
return State->set<IteratorRegionMap>(RegOrSym.get<const MemRegion *>(),
Pos);
} else if (RegOrSym.is<SymbolRef>()) {
return State->set<IteratorSymbolMap>(RegOrSym.get<SymbolRef>(), Pos);
}
return nullptr;
}
ProgramStateRef removeIteratorPosition(ProgramStateRef State, const SVal &Val) {
if (const auto Reg = Val.getAsRegion()) {
return State->remove<IteratorRegionMap>(Reg);
} else if (const auto Sym = Val.getAsSymbol()) {
return State->remove<IteratorSymbolMap>(Sym);
} else if (const auto LCVal = Val.getAs<nonloc::LazyCompoundVal>()) {
return State->remove<IteratorRegionMap>(LCVal->getRegion());
}
return nullptr;
}
ProgramStateRef adjustIteratorPosition(ProgramStateRef State,
RegionOrSymbol RegOrSym,
const IteratorPosition &Pos,
bool Equal) {
if (Equal) {
return setIteratorPosition(State, RegOrSym, Pos);
} else {
return State;
}
}
ProgramStateRef relateIteratorPositions(ProgramStateRef State,
const IteratorPosition &Pos1,
const IteratorPosition &Pos2,
bool Equal) {
auto &SVB = State->getStateManager().getSValBuilder();
// FIXME: This code should be reworked as follows:
// 1. Subtract the operands using evalBinOp().
// 2. Assume that the result doesn't overflow.
// 3. Compare the result to 0.
// 4. Assume the result of the comparison.
const auto comparison =
SVB.evalBinOp(State, BO_EQ, nonloc::SymbolVal(Pos1.getOffset()),
nonloc::SymbolVal(Pos2.getOffset()),
SVB.getConditionType());
assert(comparison.getAs<DefinedSVal>() &&
"Symbol comparison must be a `DefinedSVal`");
auto NewState = State->assume(comparison.castAs<DefinedSVal>(), Equal);
if (const auto CompSym = comparison.getAsSymbol()) {
assert(isa<SymIntExpr>(CompSym) &&
"Symbol comparison must be a `SymIntExpr`");
assert(BinaryOperator::isComparisonOp(
cast<SymIntExpr>(CompSym)->getOpcode()) &&
"Symbol comparison must be a comparison");
return assumeNoOverflow(NewState, cast<SymIntExpr>(CompSym)->getLHS(), 2);
}
return NewState;
}
bool hasLiveIterators(ProgramStateRef State, const MemRegion *Cont) {
auto RegionMap = State->get<IteratorRegionMap>();
for (const auto Reg : RegionMap) {
if (Reg.second.getContainer() == Cont)
return true;
}
auto SymbolMap = State->get<IteratorSymbolMap>();
for (const auto Sym : SymbolMap) {
if (Sym.second.getContainer() == Cont)
return true;
}
return false;
}
bool isZero(ProgramStateRef State, const NonLoc &Val) {
auto &BVF = State->getBasicVals();
return compare(State, Val,
nonloc::ConcreteInt(BVF.getValue(llvm::APSInt::get(0))),
BO_EQ);
}
bool isOutOfRange(ProgramStateRef State, const IteratorPosition &Pos) {
const auto *Cont = Pos.getContainer();
const auto *CData = getContainerData(State, Cont);
if (!CData)
return false;
// Out of range means less than the begin symbol or greater or equal to the
// end symbol.
const auto Beg = CData->getBegin();
if (Beg) {
if (isLess(State, Pos.getOffset(), Beg)) {
return true;
}
}
const auto End = CData->getEnd();
if (End) {
if (isGreaterOrEqual(State, Pos.getOffset(), End)) {
return true;
}
}
return false;
}
bool isLess(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
return compare(State, Sym1, Sym2, BO_LT);
}
bool isGreaterOrEqual(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2) {
return compare(State, Sym1, Sym2, BO_GE);
}
bool compare(ProgramStateRef State, SymbolRef Sym1, SymbolRef Sym2,
BinaryOperator::Opcode Opc) {
return compare(State, nonloc::SymbolVal(Sym1), nonloc::SymbolVal(Sym2), Opc);
}
bool compare(ProgramStateRef State, NonLoc NL1, NonLoc NL2,
BinaryOperator::Opcode Opc) {
auto &SVB = State->getStateManager().getSValBuilder();
const auto comparison =
SVB.evalBinOp(State, Opc, NL1, NL2, SVB.getConditionType());
assert(comparison.getAs<DefinedSVal>() &&
"Symbol comparison must be a `DefinedSVal`");
return !State->assume(comparison.castAs<DefinedSVal>(), false);
}
} // namespace
#define REGISTER_CHECKER(name) \
void ento::register##name(CheckerManager &Mgr) { \
auto *checker = Mgr.registerChecker<IteratorChecker>(); \
checker->ChecksEnabled[IteratorChecker::CK_##name] = true; \
checker->CheckNames[IteratorChecker::CK_##name] = \
Mgr.getCurrentCheckName(); \
}
REGISTER_CHECKER(IteratorRangeChecker)
|