1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
//===----- UninitializedObjectChecker.cpp ------------------------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a checker that reports uninitialized fields in objects
// created after a constructor call.
//
// This checker has two options:
// - "Pedantic" (boolean). If its not set or is set to false, the checker
// won't emit warnings for objects that don't have at least one initialized
// field. This may be set with
//
// `-analyzer-config alpha.cplusplus.UninitializedObject:Pedantic=true`.
//
// - "NotesAsWarnings" (boolean). If set to true, the checker will emit a
// warning for each uninitalized field, as opposed to emitting one warning
// per constructor call, and listing the uninitialized fields that belongs
// to it in notes. Defaults to false.
//
// `-analyzer-config alpha.cplusplus.UninitializedObject:NotesAsWarnings=true`.
//
//===----------------------------------------------------------------------===//
#include "ClangSACheckers.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include <algorithm>
using namespace clang;
using namespace clang::ento;
namespace {
class UninitializedObjectChecker : public Checker<check::EndFunction> {
std::unique_ptr<BuiltinBug> BT_uninitField;
public:
// These fields will be initialized when registering the checker.
bool IsPedantic;
bool ShouldConvertNotesToWarnings;
UninitializedObjectChecker()
: BT_uninitField(new BuiltinBug(this, "Uninitialized fields")) {}
void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const;
};
/// Represents a field chain. A field chain is a vector of fields where the
/// first element of the chain is the object under checking (not stored), and
/// every other element is a field, and the element that precedes it is the
/// object that contains it.
///
/// Note that this class is immutable, and new fields may only be added through
/// constructor calls.
class FieldChainInfo {
using FieldChain = llvm::ImmutableList<const FieldRegion *>;
FieldChain Chain;
const bool IsDereferenced = false;
public:
FieldChainInfo() = default;
FieldChainInfo(const FieldChainInfo &Other, const bool IsDereferenced)
: Chain(Other.Chain), IsDereferenced(IsDereferenced) {}
FieldChainInfo(const FieldChainInfo &Other, const FieldRegion *FR,
const bool IsDereferenced = false);
bool contains(const FieldRegion *FR) const { return Chain.contains(FR); }
bool isPointer() const;
/// If this is a fieldchain whose last element is an uninitialized region of a
/// pointer type, `IsDereferenced` will store whether the pointer itself or
/// the pointee is uninitialized.
bool isDereferenced() const;
const FieldDecl *getEndOfChain() const;
void print(llvm::raw_ostream &Out) const;
private:
/// Prints every element except the last to `Out`. Since ImmutableLists store
/// elements in reverse order, and have no reverse iterators, we use a
/// recursive function to print the fieldchain correctly. The last element in
/// the chain is to be printed by `print`.
static void printTail(llvm::raw_ostream &Out,
const llvm::ImmutableListImpl<const FieldRegion *> *L);
friend struct FieldChainInfoComparator;
};
struct FieldChainInfoComparator {
bool operator()(const FieldChainInfo &lhs, const FieldChainInfo &rhs) const {
assert(!lhs.Chain.isEmpty() && !rhs.Chain.isEmpty() &&
"Attempted to store an empty fieldchain!");
return *lhs.Chain.begin() < *rhs.Chain.begin();
}
};
using UninitFieldSet = std::set<FieldChainInfo, FieldChainInfoComparator>;
/// Searches for and stores uninitialized fields in a non-union object.
class FindUninitializedFields {
ProgramStateRef State;
const TypedValueRegion *const ObjectR;
const bool IsPedantic;
bool IsAnyFieldInitialized = false;
UninitFieldSet UninitFields;
public:
FindUninitializedFields(ProgramStateRef State,
const TypedValueRegion *const R, bool IsPedantic);
const UninitFieldSet &getUninitFields();
private:
/// Adds a FieldChainInfo object to UninitFields. Return true if an insertion
/// took place.
bool addFieldToUninits(FieldChainInfo LocalChain);
// For the purposes of this checker, we'll regard the object under checking as
// a directed tree, where
// * the root is the object under checking
// * every node is an object that is
// - a union
// - a non-union record
// - a pointer/reference
// - an array
// - of a primitive type, which we'll define later in a helper function.
// * the parent of each node is the object that contains it
// * every leaf is an array, a primitive object, a nullptr or an undefined
// pointer.
//
// Example:
//
// struct A {
// struct B {
// int x, y = 0;
// };
// B b;
// int *iptr = new int;
// B* bptr;
//
// A() {}
// };
//
// The directed tree:
//
// ->x
// /
// ->b--->y
// /
// A-->iptr->(int value)
// \
// ->bptr
//
// From this we'll construct a vector of fieldchains, where each fieldchain
// represents an uninitialized field. An uninitialized field may be a
// primitive object, a pointer, a pointee or a union without a single
// initialized field.
// In the above example, for the default constructor call we'll end up with
// these fieldchains:
//
// this->b.x
// this->iptr (pointee uninit)
// this->bptr (pointer uninit)
//
// We'll traverse each node of the above graph with the appropiate one of
// these methods:
/// This method checks a region of a union object, and returns true if no
/// field is initialized within the region.
bool isUnionUninit(const TypedValueRegion *R);
/// This method checks a region of a non-union object, and returns true if
/// an uninitialized field is found within the region.
bool isNonUnionUninit(const TypedValueRegion *R, FieldChainInfo LocalChain);
/// This method checks a region of a pointer or reference object, and returns
/// true if the ptr/ref object itself or any field within the pointee's region
/// is uninitialized.
bool isPointerOrReferenceUninit(const FieldRegion *FR,
FieldChainInfo LocalChain);
/// This method returns true if the value of a primitive object is
/// uninitialized.
bool isPrimitiveUninit(const SVal &V);
// Note that we don't have a method for arrays -- the elements of an array are
// often left uninitialized intentionally even when it is of a C++ record
// type, so we'll assume that an array is always initialized.
// TODO: Add a support for nonloc::LocAsInteger.
};
} // end of anonymous namespace
// Static variable instantionations.
static llvm::ImmutableListFactory<const FieldRegion *> Factory;
// Utility function declarations.
/// Returns the object that was constructed by CtorDecl, or None if that isn't
/// possible.
static Optional<nonloc::LazyCompoundVal>
getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context);
/// Checks whether the constructor under checking is called by another
/// constructor.
static bool isCalledByConstructor(const CheckerContext &Context);
/// Returns whether FD can be (transitively) dereferenced to a void pointer type
/// (void*, void**, ...). The type of the region behind a void pointer isn't
/// known, and thus FD can not be analyzed.
static bool isVoidPointer(const FieldDecl *FD);
/// Returns true if T is a primitive type. We defined this type so that for
/// objects that we'd only like analyze as much as checking whether their
/// value is undefined or not, such as ints and doubles, can be analyzed with
/// ease. This also helps ensuring that every special field type is handled
/// correctly.
static bool isPrimitiveType(const QualType &T) {
return T->isBuiltinType() || T->isEnumeralType() || T->isMemberPointerType();
}
/// Constructs a note message for a given FieldChainInfo object.
static void printNoteMessage(llvm::raw_ostream &Out,
const FieldChainInfo &Chain);
/// Returns with Field's name. This is a helper function to get the correct name
/// even if Field is a captured lambda variable.
static StringRef getVariableName(const FieldDecl *Field);
//===----------------------------------------------------------------------===//
// Methods for UninitializedObjectChecker.
//===----------------------------------------------------------------------===//
void UninitializedObjectChecker::checkEndFunction(
const ReturnStmt *RS, CheckerContext &Context) const {
const auto *CtorDecl = dyn_cast_or_null<CXXConstructorDecl>(
Context.getLocationContext()->getDecl());
if (!CtorDecl)
return;
if (!CtorDecl->isUserProvided())
return;
if (CtorDecl->getParent()->isUnion())
return;
// This avoids essentially the same error being reported multiple times.
if (isCalledByConstructor(Context))
return;
Optional<nonloc::LazyCompoundVal> Object = getObjectVal(CtorDecl, Context);
if (!Object)
return;
FindUninitializedFields F(Context.getState(), Object->getRegion(),
IsPedantic);
const UninitFieldSet &UninitFields = F.getUninitFields();
if (UninitFields.empty())
return;
// There are uninitialized fields in the record.
ExplodedNode *Node = Context.generateNonFatalErrorNode(Context.getState());
if (!Node)
return;
PathDiagnosticLocation LocUsedForUniqueing;
const Stmt *CallSite = Context.getStackFrame()->getCallSite();
if (CallSite)
LocUsedForUniqueing = PathDiagnosticLocation::createBegin(
CallSite, Context.getSourceManager(), Node->getLocationContext());
// For Plist consumers that don't support notes just yet, we'll convert notes
// to warnings.
if (ShouldConvertNotesToWarnings) {
for (const auto &Chain : UninitFields) {
SmallString<100> WarningBuf;
llvm::raw_svector_ostream WarningOS(WarningBuf);
printNoteMessage(WarningOS, Chain);
auto Report = llvm::make_unique<BugReport>(
*BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
Node->getLocationContext()->getDecl());
Context.emitReport(std::move(Report));
}
return;
}
SmallString<100> WarningBuf;
llvm::raw_svector_ostream WarningOS(WarningBuf);
WarningOS << UninitFields.size() << " uninitialized field"
<< (UninitFields.size() == 1 ? "" : "s")
<< " at the end of the constructor call";
auto Report = llvm::make_unique<BugReport>(
*BT_uninitField, WarningOS.str(), Node, LocUsedForUniqueing,
Node->getLocationContext()->getDecl());
for (const auto &Chain : UninitFields) {
SmallString<200> NoteBuf;
llvm::raw_svector_ostream NoteOS(NoteBuf);
printNoteMessage(NoteOS, Chain);
Report->addNote(NoteOS.str(),
PathDiagnosticLocation::create(Chain.getEndOfChain(),
Context.getSourceManager()));
}
Context.emitReport(std::move(Report));
}
//===----------------------------------------------------------------------===//
// Methods for FindUninitializedFields.
//===----------------------------------------------------------------------===//
FindUninitializedFields::FindUninitializedFields(
ProgramStateRef State, const TypedValueRegion *const R, bool IsPedantic)
: State(State), ObjectR(R), IsPedantic(IsPedantic) {}
const UninitFieldSet &FindUninitializedFields::getUninitFields() {
isNonUnionUninit(ObjectR, FieldChainInfo());
if (!IsPedantic && !IsAnyFieldInitialized)
UninitFields.clear();
return UninitFields;
}
bool FindUninitializedFields::addFieldToUninits(FieldChainInfo Chain) {
if (State->getStateManager().getContext().getSourceManager().isInSystemHeader(
Chain.getEndOfChain()->getLocation()))
return false;
return UninitFields.insert(Chain).second;
}
bool FindUninitializedFields::isNonUnionUninit(const TypedValueRegion *R,
FieldChainInfo LocalChain) {
assert(R->getValueType()->isRecordType() &&
!R->getValueType()->isUnionType() &&
"This method only checks non-union record objects!");
const RecordDecl *RD =
R->getValueType()->getAs<RecordType>()->getDecl()->getDefinition();
assert(RD && "Referred record has no definition");
bool ContainsUninitField = false;
// Are all of this non-union's fields initialized?
for (const FieldDecl *I : RD->fields()) {
const auto FieldVal =
State->getLValue(I, loc::MemRegionVal(R)).castAs<loc::MemRegionVal>();
const auto *FR = FieldVal.getRegionAs<FieldRegion>();
QualType T = I->getType();
// If LocalChain already contains FR, then we encountered a cyclic
// reference. In this case, region FR is already under checking at an
// earlier node in the directed tree.
if (LocalChain.contains(FR))
return false;
if (T->isStructureOrClassType()) {
if (isNonUnionUninit(FR, {LocalChain, FR}))
ContainsUninitField = true;
continue;
}
if (T->isUnionType()) {
if (isUnionUninit(FR)) {
if (addFieldToUninits({LocalChain, FR}))
ContainsUninitField = true;
} else
IsAnyFieldInitialized = true;
continue;
}
if (T->isArrayType()) {
IsAnyFieldInitialized = true;
continue;
}
if (T->isPointerType() || T->isReferenceType()) {
if (isPointerOrReferenceUninit(FR, LocalChain))
ContainsUninitField = true;
continue;
}
if (isPrimitiveType(T)) {
SVal V = State->getSVal(FieldVal);
if (isPrimitiveUninit(V)) {
if (addFieldToUninits({LocalChain, FR}))
ContainsUninitField = true;
}
continue;
}
llvm_unreachable("All cases are handled!");
}
// Checking bases.
// FIXME: As of now, because of `isCalledByConstructor`, objects whose type
// is a descendant of another type will emit warnings for uninitalized
// inherited members.
// This is not the only way to analyze bases of an object -- if we didn't
// filter them out, and didn't analyze the bases, this checker would run for
// each base of the object in order of base initailization and in theory would
// find every uninitalized field. This approach could also make handling
// diamond inheritances more easily.
//
// This rule (that a descendant type's cunstructor is responsible for
// initializing inherited data members) is not obvious, and should it should
// be.
const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if (!CXXRD)
return ContainsUninitField;
for (const CXXBaseSpecifier &BaseSpec : CXXRD->bases()) {
const auto *BaseRegion = State->getLValue(BaseSpec, R)
.castAs<loc::MemRegionVal>()
.getRegionAs<TypedValueRegion>();
if (isNonUnionUninit(BaseRegion, LocalChain))
ContainsUninitField = true;
}
return ContainsUninitField;
}
bool FindUninitializedFields::isUnionUninit(const TypedValueRegion *R) {
assert(R->getValueType()->isUnionType() &&
"This method only checks union objects!");
// TODO: Implement support for union fields.
return false;
}
// Note that pointers/references don't contain fields themselves, so in this
// function we won't add anything to LocalChain.
bool FindUninitializedFields::isPointerOrReferenceUninit(
const FieldRegion *FR, FieldChainInfo LocalChain) {
assert((FR->getDecl()->getType()->isPointerType() ||
FR->getDecl()->getType()->isReferenceType()) &&
"This method only checks pointer/reference objects!");
SVal V = State->getSVal(FR);
if (V.isUnknown() || V.isZeroConstant()) {
IsAnyFieldInitialized = true;
return false;
}
if (V.isUndef()) {
return addFieldToUninits({LocalChain, FR});
}
const FieldDecl *FD = FR->getDecl();
// TODO: The dynamic type of a void pointer may be retrieved with
// `getDynamicTypeInfo`.
if (isVoidPointer(FD)) {
IsAnyFieldInitialized = true;
return false;
}
assert(V.getAs<Loc>() && "V should be Loc at this point!");
// At this point the pointer itself is initialized and points to a valid
// location, we'll now check the pointee.
SVal DerefdV = State->getSVal(V.castAs<Loc>());
// TODO: Dereferencing should be done according to the dynamic type.
while (Optional<Loc> L = DerefdV.getAs<Loc>()) {
DerefdV = State->getSVal(*L);
}
// If V is a pointer pointing to a record type.
if (Optional<nonloc::LazyCompoundVal> RecordV =
DerefdV.getAs<nonloc::LazyCompoundVal>()) {
const TypedValueRegion *R = RecordV->getRegion();
// We can't reason about symbolic regions, assume its initialized.
// Note that this also avoids a potential infinite recursion, because
// constructors for list-like classes are checked without being called, and
// the Static Analyzer will construct a symbolic region for Node *next; or
// similar code snippets.
if (R->getSymbolicBase()) {
IsAnyFieldInitialized = true;
return false;
}
const QualType T = R->getValueType();
if (T->isStructureOrClassType())
return isNonUnionUninit(R, {LocalChain, FR});
if (T->isUnionType()) {
if (isUnionUninit(R)) {
return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
} else {
IsAnyFieldInitialized = true;
return false;
}
}
if (T->isArrayType()) {
IsAnyFieldInitialized = true;
return false;
}
llvm_unreachable("All cases are handled!");
}
// TODO: If possible, it should be asserted that the DerefdV at this point is
// primitive.
if (isPrimitiveUninit(DerefdV))
return addFieldToUninits({LocalChain, FR, /*IsDereferenced*/ true});
IsAnyFieldInitialized = true;
return false;
}
bool FindUninitializedFields::isPrimitiveUninit(const SVal &V) {
if (V.isUndef())
return true;
IsAnyFieldInitialized = true;
return false;
}
//===----------------------------------------------------------------------===//
// Methods for FieldChainInfo.
//===----------------------------------------------------------------------===//
FieldChainInfo::FieldChainInfo(const FieldChainInfo &Other,
const FieldRegion *FR, const bool IsDereferenced)
: FieldChainInfo(Other, IsDereferenced) {
assert(!contains(FR) && "Can't add a field that is already a part of the "
"fieldchain! Is this a cyclic reference?");
Chain = Factory.add(FR, Other.Chain);
}
bool FieldChainInfo::isPointer() const {
assert(!Chain.isEmpty() && "Empty fieldchain!");
return (*Chain.begin())->getDecl()->getType()->isPointerType();
}
bool FieldChainInfo::isDereferenced() const {
assert(isPointer() && "Only pointers may or may not be dereferenced!");
return IsDereferenced;
}
const FieldDecl *FieldChainInfo::getEndOfChain() const {
assert(!Chain.isEmpty() && "Empty fieldchain!");
return (*Chain.begin())->getDecl();
}
// TODO: This function constructs an incorrect fieldchain string in the
// following case:
//
// struct Base { int x; };
// struct D1 : Base {}; struct D2 : Base {};
//
// struct MostDerived : D1, D2 {
// MostDerived() {}
// }
//
// A call to MostDerived::MostDerived() will cause two notes that say
// "uninitialized field 'this->x'", but we can't refer to 'x' directly,
// we need an explicit namespace resolution whether the uninit field was
// 'D1::x' or 'D2::x'.
void FieldChainInfo::print(llvm::raw_ostream &Out) const {
if (Chain.isEmpty())
return;
const llvm::ImmutableListImpl<const FieldRegion *> *L =
Chain.getInternalPointer();
printTail(Out, L->getTail());
Out << getVariableName(L->getHead()->getDecl());
}
void FieldChainInfo::printTail(
llvm::raw_ostream &Out,
const llvm::ImmutableListImpl<const FieldRegion *> *L) {
if (!L)
return;
printTail(Out, L->getTail());
const FieldDecl *Field = L->getHead()->getDecl();
Out << getVariableName(Field);
Out << (Field->getType()->isPointerType() ? "->" : ".");
}
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
static bool isVoidPointer(const FieldDecl *FD) {
QualType T = FD->getType();
while (!T.isNull()) {
if (T->isVoidPointerType())
return true;
T = T->getPointeeType();
}
return false;
}
static Optional<nonloc::LazyCompoundVal>
getObjectVal(const CXXConstructorDecl *CtorDecl, CheckerContext &Context) {
Loc ThisLoc = Context.getSValBuilder().getCXXThis(CtorDecl->getParent(),
Context.getStackFrame());
// Getting the value for 'this'.
SVal This = Context.getState()->getSVal(ThisLoc);
// Getting the value for '*this'.
SVal Object = Context.getState()->getSVal(This.castAs<Loc>());
return Object.getAs<nonloc::LazyCompoundVal>();
}
// TODO: We should also check that if the constructor was called by another
// constructor, whether those two are in any relation to one another. In it's
// current state, this introduces some false negatives.
static bool isCalledByConstructor(const CheckerContext &Context) {
const LocationContext *LC = Context.getLocationContext()->getParent();
while (LC) {
if (isa<CXXConstructorDecl>(LC->getDecl()))
return true;
LC = LC->getParent();
}
return false;
}
static void printNoteMessage(llvm::raw_ostream &Out,
const FieldChainInfo &Chain) {
if (Chain.isPointer()) {
if (Chain.isDereferenced())
Out << "uninitialized pointee 'this->";
else
Out << "uninitialized pointer 'this->";
} else
Out << "uninitialized field 'this->";
Chain.print(Out);
Out << "'";
}
static StringRef getVariableName(const FieldDecl *Field) {
// If Field is a captured lambda variable, Field->getName() will return with
// an empty string. We can however acquire it's name from the lambda's
// captures.
const auto *CXXParent = dyn_cast<CXXRecordDecl>(Field->getParent());
if (CXXParent && CXXParent->isLambda()) {
assert(CXXParent->captures_begin());
auto It = CXXParent->captures_begin() + Field->getFieldIndex();
return It->getCapturedVar()->getName();
}
return Field->getName();
}
void ento::registerUninitializedObjectChecker(CheckerManager &Mgr) {
auto Chk = Mgr.registerChecker<UninitializedObjectChecker>();
Chk->IsPedantic = Mgr.getAnalyzerOptions().getBooleanOption(
"Pedantic", /*DefaultVal*/ false, Chk);
Chk->ShouldConvertNotesToWarnings = Mgr.getAnalyzerOptions().getBooleanOption(
"NotesAsWarnings", /*DefaultVal*/ false, Chk);
}
|