1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
//===- llvm/ADT/AllocatorList.h - Custom allocator list ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ALLOCATORLIST_H
#define LLVM_ADT_ALLOCATORLIST_H
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/simple_ilist.h"
#include "llvm/Support/Allocator.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
namespace llvm {
/// A linked-list with a custom, local allocator.
///
/// Expose a std::list-like interface that owns and uses a custom LLVM-style
/// allocator (e.g., BumpPtrAllocator), leveraging \a simple_ilist for the
/// implementation details.
///
/// Because this list owns the allocator, calling \a splice() with a different
/// list isn't generally safe. As such, \a splice has been left out of the
/// interface entirely.
template <class T, class AllocatorT> class AllocatorList : AllocatorT {
struct Node : ilist_node<Node> {
Node(Node &&) = delete;
Node(const Node &) = delete;
Node &operator=(Node &&) = delete;
Node &operator=(const Node &) = delete;
Node(T &&V) : V(std::move(V)) {}
Node(const T &V) : V(V) {}
template <class... Ts> Node(Ts &&... Vs) : V(std::forward<Ts>(Vs)...) {}
T V;
};
using list_type = simple_ilist<Node>;
list_type List;
AllocatorT &getAlloc() { return *this; }
const AllocatorT &getAlloc() const { return *this; }
template <class... ArgTs> Node *create(ArgTs &&... Args) {
return new (getAlloc()) Node(std::forward<ArgTs>(Args)...);
}
struct Cloner {
AllocatorList &AL;
Cloner(AllocatorList &AL) : AL(AL) {}
Node *operator()(const Node &N) const { return AL.create(N.V); }
};
struct Disposer {
AllocatorList &AL;
Disposer(AllocatorList &AL) : AL(AL) {}
void operator()(Node *N) const {
N->~Node();
AL.getAlloc().Deallocate(N);
}
};
public:
using value_type = T;
using pointer = T *;
using reference = T &;
using const_pointer = const T *;
using const_reference = const T &;
using size_type = typename list_type::size_type;
using difference_type = typename list_type::difference_type;
private:
template <class ValueT, class IteratorBase>
class IteratorImpl
: public iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>,
IteratorBase,
std::bidirectional_iterator_tag, ValueT> {
template <class OtherValueT, class OtherIteratorBase>
friend class IteratorImpl;
friend AllocatorList;
using base_type =
iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>, IteratorBase,
std::bidirectional_iterator_tag, ValueT>;
public:
using value_type = ValueT;
using pointer = ValueT *;
using reference = ValueT &;
IteratorImpl() = default;
IteratorImpl(const IteratorImpl &) = default;
IteratorImpl &operator=(const IteratorImpl &) = default;
explicit IteratorImpl(const IteratorBase &I) : base_type(I) {}
template <class OtherValueT, class OtherIteratorBase>
IteratorImpl(const IteratorImpl<OtherValueT, OtherIteratorBase> &X,
typename std::enable_if<std::is_convertible<
OtherIteratorBase, IteratorBase>::value>::type * = nullptr)
: base_type(X.wrapped()) {}
~IteratorImpl() = default;
reference operator*() const { return base_type::wrapped()->V; }
pointer operator->() const { return &operator*(); }
friend bool operator==(const IteratorImpl &L, const IteratorImpl &R) {
return L.wrapped() == R.wrapped();
}
friend bool operator!=(const IteratorImpl &L, const IteratorImpl &R) {
return !(L == R);
}
};
public:
using iterator = IteratorImpl<T, typename list_type::iterator>;
using reverse_iterator =
IteratorImpl<T, typename list_type::reverse_iterator>;
using const_iterator =
IteratorImpl<const T, typename list_type::const_iterator>;
using const_reverse_iterator =
IteratorImpl<const T, typename list_type::const_reverse_iterator>;
AllocatorList() = default;
AllocatorList(AllocatorList &&X)
: AllocatorT(std::move(X.getAlloc())), List(std::move(X.List)) {}
AllocatorList(const AllocatorList &X) {
List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
}
AllocatorList &operator=(AllocatorList &&X) {
clear(); // Dispose of current nodes explicitly.
List = std::move(X.List);
getAlloc() = std::move(X.getAlloc());
return *this;
}
AllocatorList &operator=(const AllocatorList &X) {
List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
return *this;
}
~AllocatorList() { clear(); }
void swap(AllocatorList &RHS) {
List.swap(RHS.List);
std::swap(getAlloc(), RHS.getAlloc());
}
bool empty() { return List.empty(); }
size_t size() { return List.size(); }
iterator begin() { return iterator(List.begin()); }
iterator end() { return iterator(List.end()); }
const_iterator begin() const { return const_iterator(List.begin()); }
const_iterator end() const { return const_iterator(List.end()); }
reverse_iterator rbegin() { return reverse_iterator(List.rbegin()); }
reverse_iterator rend() { return reverse_iterator(List.rend()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(List.rbegin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(List.rend());
}
T &back() { return List.back().V; }
T &front() { return List.front().V; }
const T &back() const { return List.back().V; }
const T &front() const { return List.front().V; }
template <class... Ts> iterator emplace(iterator I, Ts &&... Vs) {
return iterator(List.insert(I.wrapped(), *create(std::forward<Ts>(Vs)...)));
}
iterator insert(iterator I, T &&V) {
return iterator(List.insert(I.wrapped(), *create(std::move(V))));
}
iterator insert(iterator I, const T &V) {
return iterator(List.insert(I.wrapped(), *create(V)));
}
template <class Iterator>
void insert(iterator I, Iterator First, Iterator Last) {
for (; First != Last; ++First)
List.insert(I.wrapped(), *create(*First));
}
iterator erase(iterator I) {
return iterator(List.eraseAndDispose(I.wrapped(), Disposer(*this)));
}
iterator erase(iterator First, iterator Last) {
return iterator(
List.eraseAndDispose(First.wrapped(), Last.wrapped(), Disposer(*this)));
}
void clear() { List.clearAndDispose(Disposer(*this)); }
void pop_back() { List.eraseAndDispose(--List.end(), Disposer(*this)); }
void pop_front() { List.eraseAndDispose(List.begin(), Disposer(*this)); }
void push_back(T &&V) { insert(end(), std::move(V)); }
void push_front(T &&V) { insert(begin(), std::move(V)); }
void push_back(const T &V) { insert(end(), V); }
void push_front(const T &V) { insert(begin(), V); }
template <class... Ts> void emplace_back(Ts &&... Vs) {
emplace(end(), std::forward<Ts>(Vs)...);
}
template <class... Ts> void emplace_front(Ts &&... Vs) {
emplace(begin(), std::forward<Ts>(Vs)...);
}
/// Reset the underlying allocator.
///
/// \pre \c empty()
void resetAlloc() {
assert(empty() && "Cannot reset allocator if not empty");
getAlloc().Reset();
}
};
template <class T> using BumpPtrList = AllocatorList<T, BumpPtrAllocator>;
} // end namespace llvm
#endif // LLVM_ADT_ALLOCATORLIST_H
|