1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
//===- llvm/ADT/DepthFirstIterator.h - Depth First iterator -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build generic depth
// first graph iterator. This file exposes the following functions/types:
//
// df_begin/df_end/df_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
//
// idf_begin/idf_end/idf_iterator
// * Depth-first iteration on the 'inverse' graph.
//
// df_ext_begin/df_ext_end/df_ext_iterator
// * Normal depth-first iteration - visit a node and then all of its children.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
// idf_ext_begin/idf_ext_end/idf_ext_iterator
// * Depth-first iteration on the 'inverse' graph.
// This iterator stores the 'visited' set in an external set, which allows
// it to be more efficient, and allows external clients to use the set for
// other purposes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_DEPTHFIRSTITERATOR_H
#define LLVM_ADT_DEPTHFIRSTITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include <iterator>
#include <set>
#include <utility>
#include <vector>
namespace llvm {
// df_iterator_storage - A private class which is used to figure out where to
// store the visited set.
template<class SetType, bool External> // Non-external set
class df_iterator_storage {
public:
SetType Visited;
};
template<class SetType>
class df_iterator_storage<SetType, true> {
public:
df_iterator_storage(SetType &VSet) : Visited(VSet) {}
df_iterator_storage(const df_iterator_storage &S) : Visited(S.Visited) {}
SetType &Visited;
};
// The visited stated for the iteration is a simple set augmented with
// one more method, completed, which is invoked when all children of a
// node have been processed. It is intended to distinguish of back and
// cross edges in the spanning tree but is not used in the common case.
template <typename NodeRef, unsigned SmallSize=8>
struct df_iterator_default_set : public SmallPtrSet<NodeRef, SmallSize> {
using BaseSet = SmallPtrSet<NodeRef, SmallSize>;
using iterator = typename BaseSet::iterator;
std::pair<iterator,bool> insert(NodeRef N) { return BaseSet::insert(N); }
template <typename IterT>
void insert(IterT Begin, IterT End) { BaseSet::insert(Begin,End); }
void completed(NodeRef) {}
};
// Generic Depth First Iterator
template <class GraphT,
class SetType =
df_iterator_default_set<typename GraphTraits<GraphT>::NodeRef>,
bool ExtStorage = false, class GT = GraphTraits<GraphT>>
class df_iterator
: public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
public df_iterator_storage<SetType, ExtStorage> {
using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
using NodeRef = typename GT::NodeRef;
using ChildItTy = typename GT::ChildIteratorType;
// First element is node reference, second is the 'next child' to visit.
// The second child is initialized lazily to pick up graph changes during the
// DFS.
using StackElement = std::pair<NodeRef, Optional<ChildItTy>>;
// VisitStack - Used to maintain the ordering. Top = current block
std::vector<StackElement> VisitStack;
private:
inline df_iterator(NodeRef Node) {
this->Visited.insert(Node);
VisitStack.push_back(StackElement(Node, None));
}
inline df_iterator() = default; // End is when stack is empty
inline df_iterator(NodeRef Node, SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
if (this->Visited.insert(Node).second)
VisitStack.push_back(StackElement(Node, None));
}
inline df_iterator(SetType &S)
: df_iterator_storage<SetType, ExtStorage>(S) {
// End is when stack is empty
}
inline void toNext() {
do {
NodeRef Node = VisitStack.back().first;
Optional<ChildItTy> &Opt = VisitStack.back().second;
if (!Opt)
Opt.emplace(GT::child_begin(Node));
// Notice that we directly mutate *Opt here, so that
// VisitStack.back().second actually gets updated as the iterator
// increases.
while (*Opt != GT::child_end(Node)) {
NodeRef Next = *(*Opt)++;
// Has our next sibling been visited?
if (this->Visited.insert(Next).second) {
// No, do it now.
VisitStack.push_back(StackElement(Next, None));
return;
}
}
this->Visited.completed(Node);
// Oops, ran out of successors... go up a level on the stack.
VisitStack.pop_back();
} while (!VisitStack.empty());
}
public:
using pointer = typename super::pointer;
// Provide static begin and end methods as our public "constructors"
static df_iterator begin(const GraphT &G) {
return df_iterator(GT::getEntryNode(G));
}
static df_iterator end(const GraphT &G) { return df_iterator(); }
// Static begin and end methods as our public ctors for external iterators
static df_iterator begin(const GraphT &G, SetType &S) {
return df_iterator(GT::getEntryNode(G), S);
}
static df_iterator end(const GraphT &G, SetType &S) { return df_iterator(S); }
bool operator==(const df_iterator &x) const {
return VisitStack == x.VisitStack;
}
bool operator!=(const df_iterator &x) const { return !(*this == x); }
const NodeRef &operator*() const { return VisitStack.back().first; }
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the Node, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
NodeRef operator->() const { return **this; }
df_iterator &operator++() { // Preincrement
toNext();
return *this;
}
/// Skips all children of the current node and traverses to next node
///
/// Note: This function takes care of incrementing the iterator. If you
/// always increment and call this function, you risk walking off the end.
df_iterator &skipChildren() {
VisitStack.pop_back();
if (!VisitStack.empty())
toNext();
return *this;
}
df_iterator operator++(int) { // Postincrement
df_iterator tmp = *this;
++*this;
return tmp;
}
// nodeVisited - return true if this iterator has already visited the
// specified node. This is public, and will probably be used to iterate over
// nodes that a depth first iteration did not find: ie unreachable nodes.
//
bool nodeVisited(NodeRef Node) const {
return this->Visited.count(Node) != 0;
}
/// getPathLength - Return the length of the path from the entry node to the
/// current node, counting both nodes.
unsigned getPathLength() const { return VisitStack.size(); }
/// getPath - Return the n'th node in the path from the entry node to the
/// current node.
NodeRef getPath(unsigned n) const { return VisitStack[n].first; }
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
df_iterator<T> df_begin(const T& G) {
return df_iterator<T>::begin(G);
}
template <class T>
df_iterator<T> df_end(const T& G) {
return df_iterator<T>::end(G);
}
// Provide an accessor method to use them in range-based patterns.
template <class T>
iterator_range<df_iterator<T>> depth_first(const T& G) {
return make_range(df_begin(G), df_end(G));
}
// Provide global definitions of external depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>>
struct df_ext_iterator : public df_iterator<T, SetTy, true> {
df_ext_iterator(const df_iterator<T, SetTy, true> &V)
: df_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_begin(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::begin(G, S);
}
template <class T, class SetTy>
df_ext_iterator<T, SetTy> df_ext_end(const T& G, SetTy &S) {
return df_ext_iterator<T, SetTy>::end(G, S);
}
template <class T, class SetTy>
iterator_range<df_ext_iterator<T, SetTy>> depth_first_ext(const T& G,
SetTy &S) {
return make_range(df_ext_begin(G, S), df_ext_end(G, S));
}
// Provide global definitions of inverse depth first iterators...
template <class T,
class SetTy =
df_iterator_default_set<typename GraphTraits<T>::NodeRef>,
bool External = false>
struct idf_iterator : public df_iterator<Inverse<T>, SetTy, External> {
idf_iterator(const df_iterator<Inverse<T>, SetTy, External> &V)
: df_iterator<Inverse<T>, SetTy, External>(V) {}
};
template <class T>
idf_iterator<T> idf_begin(const T& G) {
return idf_iterator<T>::begin(Inverse<T>(G));
}
template <class T>
idf_iterator<T> idf_end(const T& G){
return idf_iterator<T>::end(Inverse<T>(G));
}
// Provide an accessor method to use them in range-based patterns.
template <class T>
iterator_range<idf_iterator<T>> inverse_depth_first(const T& G) {
return make_range(idf_begin(G), idf_end(G));
}
// Provide global definitions of external inverse depth first iterators...
template <class T, class SetTy = std::set<typename GraphTraits<T>::NodeRef>>
struct idf_ext_iterator : public idf_iterator<T, SetTy, true> {
idf_ext_iterator(const idf_iterator<T, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
idf_ext_iterator(const df_iterator<Inverse<T>, SetTy, true> &V)
: idf_iterator<T, SetTy, true>(V) {}
};
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_begin(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::begin(Inverse<T>(G), S);
}
template <class T, class SetTy>
idf_ext_iterator<T, SetTy> idf_ext_end(const T& G, SetTy &S) {
return idf_ext_iterator<T, SetTy>::end(Inverse<T>(G), S);
}
template <class T, class SetTy>
iterator_range<idf_ext_iterator<T, SetTy>> inverse_depth_first_ext(const T& G,
SetTy &S) {
return make_range(idf_ext_begin(G, S), idf_ext_end(G, S));
}
} // end namespace llvm
#endif // LLVM_ADT_DEPTHFIRSTITERATOR_H
|