1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file builds on the ADT/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_POSTORDERITERATOR_H
#define LLVM_ADT_POSTORDERITERATOR_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/iterator_range.h"
#include <iterator>
#include <set>
#include <utility>
#include <vector>
namespace llvm {
// The po_iterator_storage template provides access to the set of already
// visited nodes during the po_iterator's depth-first traversal.
//
// The default implementation simply contains a set of visited nodes, while
// the External=true version uses a reference to an external set.
//
// It is possible to prune the depth-first traversal in several ways:
//
// - When providing an external set that already contains some graph nodes,
// those nodes won't be visited again. This is useful for restarting a
// post-order traversal on a graph with nodes that aren't dominated by a
// single node.
//
// - By providing a custom SetType class, unwanted graph nodes can be excluded
// by having the insert() function return false. This could for example
// confine a CFG traversal to blocks in a specific loop.
//
// - Finally, by specializing the po_iterator_storage template itself, graph
// edges can be pruned by returning false in the insertEdge() function. This
// could be used to remove loop back-edges from the CFG seen by po_iterator.
//
// A specialized po_iterator_storage class can observe both the pre-order and
// the post-order. The insertEdge() function is called in a pre-order, while
// the finishPostorder() function is called just before the po_iterator moves
// on to the next node.
/// Default po_iterator_storage implementation with an internal set object.
template<class SetType, bool External>
class po_iterator_storage {
SetType Visited;
public:
// Return true if edge destination should be visited.
template <typename NodeRef>
bool insertEdge(Optional<NodeRef> From, NodeRef To) {
return Visited.insert(To).second;
}
// Called after all children of BB have been visited.
template <typename NodeRef> void finishPostorder(NodeRef BB) {}
};
/// Specialization of po_iterator_storage that references an external set.
template<class SetType>
class po_iterator_storage<SetType, true> {
SetType &Visited;
public:
po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
// Return true if edge destination should be visited, called with From = 0 for
// the root node.
// Graph edges can be pruned by specializing this function.
template <class NodeRef> bool insertEdge(Optional<NodeRef> From, NodeRef To) {
return Visited.insert(To).second;
}
// Called after all children of BB have been visited.
template <class NodeRef> void finishPostorder(NodeRef BB) {}
};
template <class GraphT,
class SetType =
SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
bool ExtStorage = false, class GT = GraphTraits<GraphT>>
class po_iterator
: public std::iterator<std::forward_iterator_tag, typename GT::NodeRef>,
public po_iterator_storage<SetType, ExtStorage> {
using super = std::iterator<std::forward_iterator_tag, typename GT::NodeRef>;
using NodeRef = typename GT::NodeRef;
using ChildItTy = typename GT::ChildIteratorType;
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::vector<std::pair<NodeRef, ChildItTy>> VisitStack;
po_iterator(NodeRef BB) {
this->insertEdge(Optional<NodeRef>(), BB);
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
po_iterator() = default; // End is when stack is empty.
po_iterator(NodeRef BB, SetType &S)
: po_iterator_storage<SetType, ExtStorage>(S) {
if (this->insertEdge(Optional<NodeRef>(), BB)) {
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
}
po_iterator(SetType &S)
: po_iterator_storage<SetType, ExtStorage>(S) {
} // End is when stack is empty.
void traverseChild() {
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
NodeRef BB = *VisitStack.back().second++;
if (this->insertEdge(Optional<NodeRef>(VisitStack.back().first), BB)) {
// If the block is not visited...
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
}
}
}
public:
using pointer = typename super::pointer;
// Provide static "constructors"...
static po_iterator begin(GraphT G) {
return po_iterator(GT::getEntryNode(G));
}
static po_iterator end(GraphT G) { return po_iterator(); }
static po_iterator begin(GraphT G, SetType &S) {
return po_iterator(GT::getEntryNode(G), S);
}
static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
bool operator==(const po_iterator &x) const {
return VisitStack == x.VisitStack;
}
bool operator!=(const po_iterator &x) const { return !(*this == x); }
const NodeRef &operator*() const { return VisitStack.back().first; }
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
NodeRef operator->() const { return **this; }
po_iterator &operator++() { // Preincrement
this->finishPostorder(VisitStack.back().first);
VisitStack.pop_back();
if (!VisitStack.empty())
traverseChild();
return *this;
}
po_iterator operator++(int) { // Postincrement
po_iterator tmp = *this;
++*this;
return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); }
template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
return make_range(po_begin(G), po_end(G));
}
// Provide global definitions of external postorder iterators...
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iterator(const po_iterator<T, SetType, true> &V) :
po_iterator<T, SetType, true>(V) {}
};
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
return po_ext_iterator<T, SetType>::begin(G, S);
}
template<class T, class SetType>
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
return po_ext_iterator<T, SetType>::end(G, S);
}
template <class T, class SetType>
iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
return make_range(po_ext_begin(G, S), po_ext_end(G, S));
}
// Provide global definitions of inverse post order iterators...
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
bool External = false>
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
po_iterator<Inverse<T>, SetType, External> (V) {}
};
template <class T>
ipo_iterator<T> ipo_begin(const T &G) {
return ipo_iterator<T>::begin(G);
}
template <class T>
ipo_iterator<T> ipo_end(const T &G){
return ipo_iterator<T>::end(G);
}
template <class T>
iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
return make_range(ipo_begin(G), ipo_end(G));
}
// Provide global definitions of external inverse postorder iterators...
template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
ipo_iterator<T, SetType, true>(V) {}
};
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
return ipo_ext_iterator<T, SetType>::begin(G, S);
}
template <class T, class SetType>
ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
return ipo_ext_iterator<T, SetType>::end(G, S);
}
template <class T, class SetType>
iterator_range<ipo_ext_iterator<T, SetType>>
inverse_post_order_ext(const T &G, SetType &S) {
return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
//
// Because it does the traversal in its constructor, it won't invalidate when
// BasicBlocks are removed, *but* it may contain erased blocks. Some places
// rely on this behavior (i.e. GVN).
//
// This class should be used like this:
// {
// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
template<class GraphT, class GT = GraphTraits<GraphT>>
class ReversePostOrderTraversal {
using NodeRef = typename GT::NodeRef;
std::vector<NodeRef> Blocks; // Block list in normal PO order
void Initialize(NodeRef BB) {
std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
}
public:
using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
// Because we want a reverse post order, use reverse iterators from the vector
rpo_iterator begin() { return Blocks.rbegin(); }
rpo_iterator end() { return Blocks.rend(); }
};
} // end namespace llvm
#endif // LLVM_ADT_POSTORDERITERATOR_H
|