1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
//==-- llvm/CodeGen/ExecutionDomainFix.h - Execution Domain Fix -*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file Execution Domain Fix pass.
///
/// Some X86 SSE instructions like mov, and, or, xor are available in different
/// variants for different operand types. These variant instructions are
/// equivalent, but on Nehalem and newer cpus there is extra latency
/// transferring data between integer and floating point domains. ARM cores
/// have similar issues when they are configured with both VFP and NEON
/// pipelines.
///
/// This pass changes the variant instructions to minimize domain crossings.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_EXECUTIONDOMAINFIX_H
#define LLVM_CODEGEN_EXECUTIONDOMAINFIX_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/LoopTraversal.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
namespace llvm {
class MachineBasicBlock;
class MachineInstr;
class TargetInstrInfo;
/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
/// of execution domains.
///
/// An open DomainValue represents a set of instructions that can still switch
/// execution domain. Multiple registers may refer to the same open
/// DomainValue - they will eventually be collapsed to the same execution
/// domain.
///
/// A collapsed DomainValue represents a single register that has been forced
/// into one of more execution domains. There is a separate collapsed
/// DomainValue for each register, but it may contain multiple execution
/// domains. A register value is initially created in a single execution
/// domain, but if we were forced to pay the penalty of a domain crossing, we
/// keep track of the fact that the register is now available in multiple
/// domains.
struct DomainValue {
/// Basic reference counting.
unsigned Refs = 0;
/// Bitmask of available domains. For an open DomainValue, it is the still
/// possible domains for collapsing. For a collapsed DomainValue it is the
/// domains where the register is available for free.
unsigned AvailableDomains;
/// Pointer to the next DomainValue in a chain. When two DomainValues are
/// merged, Victim.Next is set to point to Victor, so old DomainValue
/// references can be updated by following the chain.
DomainValue *Next;
/// Twiddleable instructions using or defining these registers.
SmallVector<MachineInstr *, 8> Instrs;
DomainValue() { clear(); }
/// A collapsed DomainValue has no instructions to twiddle - it simply keeps
/// track of the domains where the registers are already available.
bool isCollapsed() const { return Instrs.empty(); }
/// Is domain available?
bool hasDomain(unsigned domain) const {
assert(domain <
static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
"undefined behavior");
return AvailableDomains & (1u << domain);
}
/// Mark domain as available.
void addDomain(unsigned domain) { AvailableDomains |= 1u << domain; }
// Restrict to a single domain available.
void setSingleDomain(unsigned domain) { AvailableDomains = 1u << domain; }
/// Return bitmask of domains that are available and in mask.
unsigned getCommonDomains(unsigned mask) const {
return AvailableDomains & mask;
}
/// First domain available.
unsigned getFirstDomain() const {
return countTrailingZeros(AvailableDomains);
}
/// Clear this DomainValue and point to next which has all its data.
void clear() {
AvailableDomains = 0;
Next = nullptr;
Instrs.clear();
}
};
class ExecutionDomainFix : public MachineFunctionPass {
SpecificBumpPtrAllocator<DomainValue> Allocator;
SmallVector<DomainValue *, 16> Avail;
const TargetRegisterClass *const RC;
MachineFunction *MF;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
std::vector<SmallVector<int, 1>> AliasMap;
const unsigned NumRegs;
/// Value currently in each register, or NULL when no value is being tracked.
/// This counts as a DomainValue reference.
using LiveRegsDVInfo = std::vector<DomainValue *>;
LiveRegsDVInfo LiveRegs;
/// Keeps domain information for all registers. Note that this
/// is different from the usual definition notion of liveness. The CPU
/// doesn't care whether or not we consider a register killed.
using OutRegsInfoMap = SmallVector<LiveRegsDVInfo, 4>;
OutRegsInfoMap MBBOutRegsInfos;
ReachingDefAnalysis *RDA;
public:
ExecutionDomainFix(char &PassID, const TargetRegisterClass &RC)
: MachineFunctionPass(PassID), RC(&RC), NumRegs(RC.getNumRegs()) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<ReachingDefAnalysis>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
/// Translate TRI register number to a list of indices into our smaller tables
/// of interesting registers.
iterator_range<SmallVectorImpl<int>::const_iterator>
regIndices(unsigned Reg) const;
/// DomainValue allocation.
DomainValue *alloc(int domain = -1);
/// Add reference to DV.
DomainValue *retain(DomainValue *DV) {
if (DV)
++DV->Refs;
return DV;
}
/// Release a reference to DV. When the last reference is released,
/// collapse if needed.
void release(DomainValue *);
/// Follow the chain of dead DomainValues until a live DomainValue is reached.
/// Update the referenced pointer when necessary.
DomainValue *resolve(DomainValue *&);
/// Set LiveRegs[rx] = dv, updating reference counts.
void setLiveReg(int rx, DomainValue *DV);
/// Kill register rx, recycle or collapse any DomainValue.
void kill(int rx);
/// Force register rx into domain.
void force(int rx, unsigned domain);
/// Collapse open DomainValue into given domain. If there are multiple
/// registers using dv, they each get a unique collapsed DomainValue.
void collapse(DomainValue *dv, unsigned domain);
/// All instructions and registers in B are moved to A, and B is released.
bool merge(DomainValue *A, DomainValue *B);
/// Set up LiveRegs by merging predecessor live-out values.
void enterBasicBlock(const LoopTraversal::TraversedMBBInfo &TraversedMBB);
/// Update live-out values.
void leaveBasicBlock(const LoopTraversal::TraversedMBBInfo &TraversedMBB);
/// Process he given basic block.
void processBasicBlock(const LoopTraversal::TraversedMBBInfo &TraversedMBB);
/// Visit given insturcion.
bool visitInstr(MachineInstr *);
/// Update def-ages for registers defined by MI.
/// If Kill is set, also kill off DomainValues clobbered by the defs.
void processDefs(MachineInstr *, bool Kill);
/// A soft instruction can be changed to work in other domains given by mask.
void visitSoftInstr(MachineInstr *, unsigned mask);
/// A hard instruction only works in one domain. All input registers will be
/// forced into that domain.
void visitHardInstr(MachineInstr *, unsigned domain);
};
} // namespace llvm
#endif // LLVM_CODEGEN_EXECUTIONDOMAINFIX_H
|