1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
|
//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// Interface for Targets to specify which operations they can successfully
/// select and how the others should be expanded most efficiently.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include <cassert>
#include <cstdint>
#include <tuple>
#include <unordered_map>
#include <utility>
namespace llvm {
extern cl::opt<bool> DisableGISelLegalityCheck;
class MachineInstr;
class MachineIRBuilder;
class MachineRegisterInfo;
class MCInstrInfo;
namespace LegalizeActions {
enum LegalizeAction : std::uint8_t {
/// The operation is expected to be selectable directly by the target, and
/// no transformation is necessary.
Legal,
/// The operation should be synthesized from multiple instructions acting on
/// a narrower scalar base-type. For example a 64-bit add might be
/// implemented in terms of 32-bit add-with-carry.
NarrowScalar,
/// The operation should be implemented in terms of a wider scalar
/// base-type. For example a <2 x s8> add could be implemented as a <2
/// x s32> add (ignoring the high bits).
WidenScalar,
/// The (vector) operation should be implemented by splitting it into
/// sub-vectors where the operation is legal. For example a <8 x s64> add
/// might be implemented as 4 separate <2 x s64> adds.
FewerElements,
/// The (vector) operation should be implemented by widening the input
/// vector and ignoring the lanes added by doing so. For example <2 x i8> is
/// rarely legal, but you might perform an <8 x i8> and then only look at
/// the first two results.
MoreElements,
/// The operation itself must be expressed in terms of simpler actions on
/// this target. E.g. a SREM replaced by an SDIV and subtraction.
Lower,
/// The operation should be implemented as a call to some kind of runtime
/// support library. For example this usually happens on machines that don't
/// support floating-point operations natively.
Libcall,
/// The target wants to do something special with this combination of
/// operand and type. A callback will be issued when it is needed.
Custom,
/// This operation is completely unsupported on the target. A programming
/// error has occurred.
Unsupported,
/// Sentinel value for when no action was found in the specified table.
NotFound,
/// Fall back onto the old rules.
/// TODO: Remove this once we've migrated
UseLegacyRules,
};
} // end namespace LegalizeActions
using LegalizeActions::LegalizeAction;
/// Legalization is decided based on an instruction's opcode, which type slot
/// we're considering, and what the existing type is. These aspects are gathered
/// together for convenience in the InstrAspect class.
struct InstrAspect {
unsigned Opcode;
unsigned Idx = 0;
LLT Type;
InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {}
InstrAspect(unsigned Opcode, unsigned Idx, LLT Type)
: Opcode(Opcode), Idx(Idx), Type(Type) {}
bool operator==(const InstrAspect &RHS) const {
return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type;
}
};
/// The LegalityQuery object bundles together all the information that's needed
/// to decide whether a given operation is legal or not.
/// For efficiency, it doesn't make a copy of Types so care must be taken not
/// to free it before using the query.
struct LegalityQuery {
unsigned Opcode;
ArrayRef<LLT> Types;
struct MemDesc {
uint64_t Size;
AtomicOrdering Ordering;
};
/// Operations which require memory can use this to place requirements on the
/// memory type for each MMO.
ArrayRef<MemDesc> MMODescrs;
constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types,
const ArrayRef<MemDesc> MMODescrs)
: Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {}
constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types)
: LegalityQuery(Opcode, Types, {}) {}
raw_ostream &print(raw_ostream &OS) const;
};
/// The result of a query. It either indicates a final answer of Legal or
/// Unsupported or describes an action that must be taken to make an operation
/// more legal.
struct LegalizeActionStep {
/// The action to take or the final answer.
LegalizeAction Action;
/// If describing an action, the type index to change. Otherwise zero.
unsigned TypeIdx;
/// If describing an action, the new type for TypeIdx. Otherwise LLT{}.
LLT NewType;
LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx,
const LLT &NewType)
: Action(Action), TypeIdx(TypeIdx), NewType(NewType) {}
bool operator==(const LegalizeActionStep &RHS) const {
return std::tie(Action, TypeIdx, NewType) ==
std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType);
}
};
using LegalityPredicate = std::function<bool (const LegalityQuery &)>;
using LegalizeMutation =
std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>;
namespace LegalityPredicates {
struct TypePairAndMemSize {
LLT Type0;
LLT Type1;
uint64_t MemSize;
bool operator==(const TypePairAndMemSize &Other) const {
return Type0 == Other.Type0 && Type1 == Other.Type1 &&
MemSize == Other.MemSize;
}
};
/// True iff P0 and P1 are true.
template<typename Predicate>
Predicate all(Predicate P0, Predicate P1) {
return [=](const LegalityQuery &Query) {
return P0(Query) && P1(Query);
};
}
/// True iff all given predicates are true.
template<typename Predicate, typename... Args>
Predicate all(Predicate P0, Predicate P1, Args... args) {
return all(all(P0, P1), args...);
}
/// True iff the given type index is the specified types.
LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit);
/// True iff the given type index is one of the specified types.
LegalityPredicate typeInSet(unsigned TypeIdx,
std::initializer_list<LLT> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate
typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1,
std::initializer_list<std::pair<LLT, LLT>> TypesInit);
/// True iff the given types for the given pair of type indexes is one of the
/// specified type pairs.
LegalityPredicate typePairAndMemSizeInSet(
unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
std::initializer_list<TypePairAndMemSize> TypesAndMemSizeInit);
/// True iff the specified type index is a scalar.
LegalityPredicate isScalar(unsigned TypeIdx);
/// True iff the specified type index is a scalar that's narrower than the given
/// size.
LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar that's wider than the given
/// size.
LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size);
/// True iff the specified type index is a scalar whose size is not a power of
/// 2.
LegalityPredicate sizeNotPow2(unsigned TypeIdx);
/// True iff the specified MMO index has a size that is not a power of 2
LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx);
/// True iff the specified type index is a vector whose element count is not a
/// power of 2.
LegalityPredicate numElementsNotPow2(unsigned TypeIdx);
/// True iff the specified MMO index has at an atomic ordering of at Ordering or
/// stronger.
LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx,
AtomicOrdering Ordering);
} // end namespace LegalityPredicates
namespace LegalizeMutations {
/// Select this specific type for the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty);
/// Keep the same type as the given type index.
LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx);
/// Widen the type for the given type index to the next power of 2.
LegalizeMutation widenScalarToNextPow2(unsigned TypeIdx, unsigned Min = 0);
/// Add more elements to the type for the given type index to the next power of
/// 2.
LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0);
} // end namespace LegalizeMutations
/// A single rule in a legalizer info ruleset.
/// The specified action is chosen when the predicate is true. Where appropriate
/// for the action (e.g. for WidenScalar) the new type is selected using the
/// given mutator.
class LegalizeRule {
LegalityPredicate Predicate;
LegalizeAction Action;
LegalizeMutation Mutation;
public:
LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action,
LegalizeMutation Mutation = nullptr)
: Predicate(Predicate), Action(Action), Mutation(Mutation) {}
/// Test whether the LegalityQuery matches.
bool match(const LegalityQuery &Query) const {
return Predicate(Query);
}
LegalizeAction getAction() const { return Action; }
/// Determine the change to make.
std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const {
if (Mutation)
return Mutation(Query);
return std::make_pair(0, LLT{});
}
};
class LegalizeRuleSet {
/// When non-zero, the opcode we are an alias of
unsigned AliasOf;
/// If true, there is another opcode that aliases this one
bool IsAliasedByAnother;
SmallVector<LegalizeRule, 2> Rules;
#ifndef NDEBUG
/// If bit I is set, this rule set contains a rule that may handle (predicate
/// or perform an action upon (or both)) the type index I. The uncertainty
/// comes from free-form rules executing user-provided lambda functions. We
/// conservatively assume such rules do the right thing and cover all type
/// indices. The bitset is intentionally 1 bit wider than it absolutely needs
/// to be to distinguish such cases from the cases where all type indices are
/// individually handled.
SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC -
MCOI::OPERAND_FIRST_GENERIC + 2};
#endif
unsigned typeIdx(unsigned TypeIdx) {
assert(TypeIdx <=
(MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) &&
"Type Index is out of bounds");
#ifndef NDEBUG
TypeIdxsCovered.set(TypeIdx);
#endif
return TypeIdx;
}
void markAllTypeIdxsAsCovered() {
#ifndef NDEBUG
TypeIdxsCovered.set();
#endif
}
void add(const LegalizeRule &Rule) {
assert(AliasOf == 0 &&
"RuleSet is aliased, change the representative opcode instead");
Rules.push_back(Rule);
}
static bool always(const LegalityQuery &) { return true; }
/// Use the given action when the predicate is true.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionIf(LegalizeAction Action,
LegalityPredicate Predicate) {
add({Predicate, Action});
return *this;
}
/// Use the given action when the predicate is true.
/// Action should be an action that requires mutation.
LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate,
LegalizeMutation Mutation) {
add({Predicate, Action, Mutation});
return *this;
}
/// Use the given action when type index 0 is any type in the given list.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<LLT> Types) {
using namespace LegalityPredicates;
return actionIf(Action, typeInSet(typeIdx(0), Types));
}
/// Use the given action when type index 0 is any type in the given list.
/// Action should be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<LLT> Types,
LegalizeMutation Mutation) {
using namespace LegalityPredicates;
return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation);
}
/// Use the given action when type indexes 0 and 1 is any type pair in the
/// given list.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<std::pair<LLT, LLT>> Types) {
using namespace LegalityPredicates;
return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
}
/// Use the given action when type indexes 0 and 1 is any type pair in the
/// given list.
/// Action should be an action that requires mutation.
LegalizeRuleSet &actionFor(LegalizeAction Action,
std::initializer_list<std::pair<LLT, LLT>> Types,
LegalizeMutation Mutation) {
using namespace LegalityPredicates;
return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
Mutation);
}
/// Use the given action when type indexes 0 and 1 are both in the given list.
/// That is, the type pair is in the cartesian product of the list.
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action,
std::initializer_list<LLT> Types) {
using namespace LegalityPredicates;
return actionIf(Action, all(typeInSet(typeIdx(0), Types),
typeInSet(typeIdx(1), Types)));
}
/// Use the given action when type indexes 0 and 1 are both in their
/// respective lists.
/// That is, the type pair is in the cartesian product of the lists
/// Action should not be an action that requires mutation.
LegalizeRuleSet &
actionForCartesianProduct(LegalizeAction Action,
std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
using namespace LegalityPredicates;
return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
typeInSet(typeIdx(1), Types1)));
}
/// Use the given action when type indexes 0, 1, and 2 are all in their
/// respective lists.
/// That is, the type triple is in the cartesian product of the lists
/// Action should not be an action that requires mutation.
LegalizeRuleSet &actionForCartesianProduct(
LegalizeAction Action, std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
using namespace LegalityPredicates;
return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
all(typeInSet(typeIdx(1), Types1),
typeInSet(typeIdx(2), Types2))));
}
public:
LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {}
bool isAliasedByAnother() { return IsAliasedByAnother; }
void setIsAliasedByAnother() { IsAliasedByAnother = true; }
void aliasTo(unsigned Opcode) {
assert((AliasOf == 0 || AliasOf == Opcode) &&
"Opcode is already aliased to another opcode");
assert(Rules.empty() && "Aliasing will discard rules");
AliasOf = Opcode;
}
unsigned getAlias() const { return AliasOf; }
/// The instruction is legal if predicate is true.
LegalizeRuleSet &legalIf(LegalityPredicate Predicate) {
// We have no choice but conservatively assume that the free-form
// user-provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::Legal, Predicate);
}
/// The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type indexes 0 and 1 is any type pair in the
/// given list.
LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type indexes 0 and 1 along with the memory
/// size is any type and size tuple in the given list.
LegalizeRuleSet &legalForTypesWithMemSize(
std::initializer_list<LegalityPredicates::TypePairAndMemSize>
TypesAndMemSize) {
return actionIf(LegalizeAction::Legal,
LegalityPredicates::typePairAndMemSizeInSet(
typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemSize));
}
/// The instruction is legal when type indexes 0 and 1 are both in the given
/// list. That is, the type pair is in the cartesian product of the list.
LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) {
return actionForCartesianProduct(LegalizeAction::Legal, Types);
}
/// The instruction is legal when type indexes 0 and 1 are both their
/// respective lists.
LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
}
/// The instruction is lowered.
LegalizeRuleSet &lower() {
using namespace LegalizeMutations;
// We have no choice but conservatively assume that predicate-less lowering
// properly handles all type indices by design:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::Lower, always);
}
/// The instruction is lowered if predicate is true. Keep type index 0 as the
/// same type.
LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) {
using namespace LegalizeMutations;
// We have no choice but conservatively assume that lowering with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::Lower, Predicate);
}
/// The instruction is lowered if predicate is true.
LegalizeRuleSet &lowerIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that lowering with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::Lower, Predicate, Mutation);
}
/// The instruction is lowered when type index 0 is any type in the given
/// list. Keep type index 0 as the same type.
LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Lower, Types,
LegalizeMutations::changeTo(0, 0));
}
/// The instruction is lowered when type index 0 is any type in the given
/// list.
LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types,
LegalizeMutation Mutation) {
return actionFor(LegalizeAction::Lower, Types, Mutation);
}
/// The instruction is lowered when type indexes 0 and 1 is any type pair in
/// the given list. Keep type index 0 as the same type.
LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Lower, Types,
LegalizeMutations::changeTo(0, 0));
}
/// The instruction is lowered when type indexes 0 and 1 is any type pair in
/// the given list.
LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types,
LegalizeMutation Mutation) {
return actionFor(LegalizeAction::Lower, Types, Mutation);
}
/// The instruction is lowered when type indexes 0 and 1 are both in their
/// respective lists.
LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
using namespace LegalityPredicates;
return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
}
/// The instruction is lowered when when type indexes 0, 1, and 2 are all in
/// their respective lists.
LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1,
std::initializer_list<LLT> Types2) {
using namespace LegalityPredicates;
return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
Types2);
}
/// Like legalIf, but for the Libcall action.
LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) {
// We have no choice but conservatively assume that a libcall with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::Libcall, Predicate);
}
LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Libcall, Types);
}
LegalizeRuleSet &
libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
return actionFor(LegalizeAction::Libcall, Types);
}
LegalizeRuleSet &
libcallForCartesianProduct(std::initializer_list<LLT> Types) {
return actionForCartesianProduct(LegalizeAction::Libcall, Types);
}
LegalizeRuleSet &
libcallForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
}
/// Widen the scalar to the one selected by the mutation if the predicate is
/// true.
LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation);
}
/// Narrow the scalar to the one selected by the mutation if the predicate is
/// true.
LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation);
}
/// Add more elements to reach the type selected by the mutation if the
/// predicate is true.
LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::MoreElements, Predicate, Mutation);
}
/// Remove elements to reach the type selected by the mutation if the
/// predicate is true.
LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate,
LegalizeMutation Mutation) {
// We have no choice but conservatively assume that an action with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::FewerElements, Predicate, Mutation);
}
/// The instruction is unsupported.
LegalizeRuleSet &unsupported() {
return actionIf(LegalizeAction::Unsupported, always);
}
LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) {
return actionIf(LegalizeAction::Unsupported, Predicate);
}
LegalizeRuleSet &unsupportedIfMemSizeNotPow2() {
return actionIf(LegalizeAction::Unsupported,
LegalityPredicates::memSizeInBytesNotPow2(0));
}
LegalizeRuleSet &customIf(LegalityPredicate Predicate) {
// We have no choice but conservatively assume that a custom action with a
// free-form user provided Predicate properly handles all type indices:
markAllTypeIdxsAsCovered();
return actionIf(LegalizeAction::Custom, Predicate);
}
LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) {
return actionFor(LegalizeAction::Custom, Types);
}
LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) {
return actionForCartesianProduct(LegalizeAction::Custom, Types);
}
LegalizeRuleSet &
customForCartesianProduct(std::initializer_list<LLT> Types0,
std::initializer_list<LLT> Types1) {
return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
}
/// Widen the scalar to the next power of two that is at least MinSize.
/// No effect if the type is not a scalar or is a power of two.
LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx,
unsigned MinSize = 0) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
LegalizeMutations::widenScalarToNextPow2(TypeIdx, MinSize));
}
LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
Mutation);
}
/// Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::WidenScalar,
narrowerThan(TypeIdx, Ty.getSizeInBits()),
changeTo(typeIdx(TypeIdx), Ty));
}
/// Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::NarrowScalar,
widerThan(TypeIdx, Ty.getSizeInBits()),
changeTo(typeIdx(TypeIdx), Ty));
}
/// Conditionally limit the maximum size of the scalar.
/// For example, when the maximum size of one type depends on the size of
/// another such as extracting N bits from an M bit container.
LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx,
const LLT &Ty) {
using namespace LegalityPredicates;
using namespace LegalizeMutations;
return actionIf(LegalizeAction::NarrowScalar,
[=](const LegalityQuery &Query) {
return widerThan(TypeIdx, Ty.getSizeInBits()) &&
Predicate(Query);
},
changeTo(typeIdx(TypeIdx), Ty));
}
/// Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy,
const LLT &MaxTy) {
assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types");
return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy);
}
/// Add more elements to the vector to reach the next power of two.
/// No effect if the type is not a vector or the element count is a power of
/// two.
LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) {
using namespace LegalityPredicates;
return actionIf(LegalizeAction::MoreElements,
numElementsNotPow2(typeIdx(TypeIdx)),
LegalizeMutations::moreElementsToNextPow2(TypeIdx));
}
/// Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy,
unsigned MinElements) {
// Mark the type index as covered:
typeIdx(TypeIdx);
return actionIf(
LegalizeAction::MoreElements,
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return VecTy.isVector() && VecTy.getElementType() == EltTy &&
VecTy.getNumElements() < MinElements;
},
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return std::make_pair(
TypeIdx, LLT::vector(MinElements, VecTy.getScalarSizeInBits()));
});
}
/// Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy,
unsigned MaxElements) {
// Mark the type index as covered:
typeIdx(TypeIdx);
return actionIf(
LegalizeAction::FewerElements,
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return VecTy.isVector() && VecTy.getElementType() == EltTy &&
VecTy.getNumElements() > MaxElements;
},
[=](const LegalityQuery &Query) {
LLT VecTy = Query.Types[TypeIdx];
return std::make_pair(
TypeIdx, LLT::vector(MaxElements, VecTy.getScalarSizeInBits()));
});
}
/// Limit the number of elements for the given vectors to at least MinTy's
/// number of elements and at most MaxTy's number of elements.
///
/// No effect if the type is not a vector or does not have the same element
/// type as the constraints.
/// The element type of MinTy and MaxTy must match.
LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy,
const LLT &MaxTy) {
assert(MinTy.getElementType() == MaxTy.getElementType() &&
"Expected element types to agree");
const LLT &EltTy = MinTy.getElementType();
return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements())
.clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements());
}
/// Fallback on the previous implementation. This should only be used while
/// porting a rule.
LegalizeRuleSet &fallback() {
add({always, LegalizeAction::UseLegacyRules});
return *this;
}
/// Check if there is no type index which is obviously not handled by the
/// LegalizeRuleSet in any way at all.
/// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const;
/// Apply the ruleset to the given LegalityQuery.
LegalizeActionStep apply(const LegalityQuery &Query) const;
};
class LegalizerInfo {
public:
LegalizerInfo();
virtual ~LegalizerInfo() = default;
unsigned getOpcodeIdxForOpcode(unsigned Opcode) const;
unsigned getActionDefinitionsIdx(unsigned Opcode) const;
/// Compute any ancillary tables needed to quickly decide how an operation
/// should be handled. This must be called after all "set*Action"methods but
/// before any query is made or incorrect results may be returned.
void computeTables();
/// Perform simple self-diagnostic and assert if there is anything obviously
/// wrong with the actions set up.
void verify(const MCInstrInfo &MII) const;
static bool needsLegalizingToDifferentSize(const LegalizeAction Action) {
using namespace LegalizeActions;
switch (Action) {
case NarrowScalar:
case WidenScalar:
case FewerElements:
case MoreElements:
case Unsupported:
return true;
default:
return false;
}
}
using SizeAndAction = std::pair<uint16_t, LegalizeAction>;
using SizeAndActionsVec = std::vector<SizeAndAction>;
using SizeChangeStrategy =
std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>;
/// More friendly way to set an action for common types that have an LLT
/// representation.
/// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize
/// returns false.
void setAction(const InstrAspect &Aspect, LegalizeAction Action) {
assert(!needsLegalizingToDifferentSize(Action));
TablesInitialized = false;
const unsigned OpcodeIdx = Aspect.Opcode - FirstOp;
if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx)
SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1);
SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action;
}
/// The setAction calls record the non-size-changing legalization actions
/// to take on specificly-sized types. The SizeChangeStrategy defines what
/// to do when the size of the type needs to be changed to reach a legally
/// sized type (i.e., one that was defined through a setAction call).
/// e.g.
/// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal);
/// setLegalizeScalarToDifferentSizeStrategy(
/// G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
/// will end up defining getAction({G_ADD, 0, T}) to return the following
/// actions for different scalar types T:
/// LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)}
/// LLT::scalar(32): {Legal, 0, LLT::scalar(32)}
/// LLT::scalar(33)..: {NarrowScalar, 0, LLT::scalar(32)}
///
/// If no SizeChangeAction gets defined, through this function,
/// the default is unsupportedForDifferentSizes.
void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode,
const unsigned TypeIdx,
SizeChangeStrategy S) {
const unsigned OpcodeIdx = Opcode - FirstOp;
if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
}
/// See also setLegalizeScalarToDifferentSizeStrategy.
/// This function allows to set the SizeChangeStrategy for vector elements.
void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode,
const unsigned TypeIdx,
SizeChangeStrategy S) {
const unsigned OpcodeIdx = Opcode - FirstOp;
if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
}
/// A SizeChangeStrategy for the common case where legalization for a
/// particular operation consists of only supporting a specific set of type
/// sizes. E.g.
/// setAction ({G_DIV, 0, LLT::scalar(32)}, Legal);
/// setAction ({G_DIV, 0, LLT::scalar(64)}, Legal);
/// setLegalizeScalarToDifferentSizeStrategy(
/// G_DIV, 0, unsupportedForDifferentSizes);
/// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64,
/// and Unsupported for all other scalar types T.
static SizeAndActionsVec
unsupportedForDifferentSizes(const SizeAndActionsVec &v) {
using namespace LegalizeActions;
return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported,
Unsupported);
}
/// A SizeChangeStrategy for the common case where legalization for a
/// particular operation consists of widening the type to a large legal type,
/// unless there is no such type and then instead it should be narrowed to the
/// largest legal type.
static SizeAndActionsVec
widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) {
using namespace LegalizeActions;
assert(v.size() > 0 &&
"At least one size that can be legalized towards is needed"
" for this SizeChangeStrategy");
return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
NarrowScalar);
}
static SizeAndActionsVec
widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) {
using namespace LegalizeActions;
return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
Unsupported);
}
static SizeAndActionsVec
narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) {
using namespace LegalizeActions;
return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
Unsupported);
}
static SizeAndActionsVec
narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) {
using namespace LegalizeActions;
assert(v.size() > 0 &&
"At least one size that can be legalized towards is needed"
" for this SizeChangeStrategy");
return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
WidenScalar);
}
/// A SizeChangeStrategy for the common case where legalization for a
/// particular vector operation consists of having more elements in the
/// vector, to a type that is legal. Unless there is no such type and then
/// instead it should be legalized towards the widest vector that's still
/// legal. E.g.
/// setAction({G_ADD, LLT::vector(8, 8)}, Legal);
/// setAction({G_ADD, LLT::vector(16, 8)}, Legal);
/// setAction({G_ADD, LLT::vector(2, 32)}, Legal);
/// setAction({G_ADD, LLT::vector(4, 32)}, Legal);
/// setLegalizeVectorElementToDifferentSizeStrategy(
/// G_ADD, 0, moreToWiderTypesAndLessToWidest);
/// will result in the following getAction results:
/// * getAction({G_ADD, LLT::vector(8,8)}) returns
/// (Legal, vector(8,8)).
/// * getAction({G_ADD, LLT::vector(9,8)}) returns
/// (MoreElements, vector(16,8)).
/// * getAction({G_ADD, LLT::vector(8,32)}) returns
/// (FewerElements, vector(4,32)).
static SizeAndActionsVec
moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) {
using namespace LegalizeActions;
return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements,
FewerElements);
}
/// Helper function to implement many typical SizeChangeStrategy functions.
static SizeAndActionsVec
increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v,
LegalizeAction IncreaseAction,
LegalizeAction DecreaseAction);
/// Helper function to implement many typical SizeChangeStrategy functions.
static SizeAndActionsVec
decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v,
LegalizeAction DecreaseAction,
LegalizeAction IncreaseAction);
/// Get the action definitions for the given opcode. Use this to run a
/// LegalityQuery through the definitions.
const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const;
/// Get the action definition builder for the given opcode. Use this to define
/// the action definitions.
///
/// It is an error to request an opcode that has already been requested by the
/// multiple-opcode variant.
LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode);
/// Get the action definition builder for the given set of opcodes. Use this
/// to define the action definitions for multiple opcodes at once. The first
/// opcode given will be considered the representative opcode and will hold
/// the definitions whereas the other opcodes will be configured to refer to
/// the representative opcode. This lowers memory requirements and very
/// slightly improves performance.
///
/// It would be very easy to introduce unexpected side-effects as a result of
/// this aliasing if it were permitted to request different but intersecting
/// sets of opcodes but that is difficult to keep track of. It is therefore an
/// error to request the same opcode twice using this API, to request an
/// opcode that already has definitions, or to use the single-opcode API on an
/// opcode that has already been requested by this API.
LegalizeRuleSet &
getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom);
/// Determine what action should be taken to legalize the described
/// instruction. Requires computeTables to have been called.
///
/// \returns a description of the next legalization step to perform.
LegalizeActionStep getAction(const LegalityQuery &Query) const;
/// Determine what action should be taken to legalize the given generic
/// instruction.
///
/// \returns a description of the next legalization step to perform.
LegalizeActionStep getAction(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const;
bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const;
virtual bool legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const;
private:
/// Determine what action should be taken to legalize the given generic
/// instruction opcode, type-index and type. Requires computeTables to have
/// been called.
///
/// \returns a pair consisting of the kind of legalization that should be
/// performed and the destination type.
std::pair<LegalizeAction, LLT>
getAspectAction(const InstrAspect &Aspect) const;
/// The SizeAndActionsVec is a representation mapping between all natural
/// numbers and an Action. The natural number represents the bit size of
/// the InstrAspect. For example, for a target with native support for 32-bit
/// and 64-bit additions, you'd express that as:
/// setScalarAction(G_ADD, 0,
/// {{1, WidenScalar}, // bit sizes [ 1, 31[
/// {32, Legal}, // bit sizes [32, 33[
/// {33, WidenScalar}, // bit sizes [33, 64[
/// {64, Legal}, // bit sizes [64, 65[
/// {65, NarrowScalar} // bit sizes [65, +inf[
/// });
/// It may be that only 64-bit pointers are supported on your target:
/// setPointerAction(G_GEP, 0, LLT:pointer(1),
/// {{1, Unsupported}, // bit sizes [ 1, 63[
/// {64, Legal}, // bit sizes [64, 65[
/// {65, Unsupported}, // bit sizes [65, +inf[
/// });
void setScalarAction(const unsigned Opcode, const unsigned TypeIndex,
const SizeAndActionsVec &SizeAndActions) {
const unsigned OpcodeIdx = Opcode - FirstOp;
SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx];
setActions(TypeIndex, Actions, SizeAndActions);
}
void setPointerAction(const unsigned Opcode, const unsigned TypeIndex,
const unsigned AddressSpace,
const SizeAndActionsVec &SizeAndActions) {
const unsigned OpcodeIdx = Opcode - FirstOp;
if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) ==
AddrSpace2PointerActions[OpcodeIdx].end())
AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}};
SmallVector<SizeAndActionsVec, 1> &Actions =
AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second;
setActions(TypeIndex, Actions, SizeAndActions);
}
/// If an operation on a given vector type (say <M x iN>) isn't explicitly
/// specified, we proceed in 2 stages. First we legalize the underlying scalar
/// (so that there's at least one legal vector with that scalar), then we
/// adjust the number of elements in the vector so that it is legal. The
/// desired action in the first step is controlled by this function.
void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex,
const SizeAndActionsVec &SizeAndActions) {
unsigned OpcodeIdx = Opcode - FirstOp;
SmallVector<SizeAndActionsVec, 1> &Actions =
ScalarInVectorActions[OpcodeIdx];
setActions(TypeIndex, Actions, SizeAndActions);
}
/// See also setScalarInVectorAction.
/// This function let's you specify the number of elements in a vector that
/// are legal for a legal element size.
void setVectorNumElementAction(const unsigned Opcode,
const unsigned TypeIndex,
const unsigned ElementSize,
const SizeAndActionsVec &SizeAndActions) {
const unsigned OpcodeIdx = Opcode - FirstOp;
if (NumElements2Actions[OpcodeIdx].find(ElementSize) ==
NumElements2Actions[OpcodeIdx].end())
NumElements2Actions[OpcodeIdx][ElementSize] = {{}};
SmallVector<SizeAndActionsVec, 1> &Actions =
NumElements2Actions[OpcodeIdx].find(ElementSize)->second;
setActions(TypeIndex, Actions, SizeAndActions);
}
/// A partial SizeAndActionsVec potentially doesn't cover all bit sizes,
/// i.e. it's OK if it doesn't start from size 1.
static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) {
using namespace LegalizeActions;
#ifndef NDEBUG
// The sizes should be in increasing order
int prev_size = -1;
for(auto SizeAndAction: v) {
assert(SizeAndAction.first > prev_size);
prev_size = SizeAndAction.first;
}
// - for every Widen action, there should be a larger bitsize that
// can be legalized towards (e.g. Legal, Lower, Libcall or Custom
// action).
// - for every Narrow action, there should be a smaller bitsize that
// can be legalized towards.
int SmallestNarrowIdx = -1;
int LargestWidenIdx = -1;
int SmallestLegalizableToSameSizeIdx = -1;
int LargestLegalizableToSameSizeIdx = -1;
for(size_t i=0; i<v.size(); ++i) {
switch (v[i].second) {
case FewerElements:
case NarrowScalar:
if (SmallestNarrowIdx == -1)
SmallestNarrowIdx = i;
break;
case WidenScalar:
case MoreElements:
LargestWidenIdx = i;
break;
case Unsupported:
break;
default:
if (SmallestLegalizableToSameSizeIdx == -1)
SmallestLegalizableToSameSizeIdx = i;
LargestLegalizableToSameSizeIdx = i;
}
}
if (SmallestNarrowIdx != -1) {
assert(SmallestLegalizableToSameSizeIdx != -1);
assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx);
}
if (LargestWidenIdx != -1)
assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx);
#endif
}
/// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with
/// from size 1.
static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) {
#ifndef NDEBUG
// Data structure invariant: The first bit size must be size 1.
assert(v.size() >= 1);
assert(v[0].first == 1);
checkPartialSizeAndActionsVector(v);
#endif
}
/// Sets actions for all bit sizes on a particular generic opcode, type
/// index and scalar or pointer type.
void setActions(unsigned TypeIndex,
SmallVector<SizeAndActionsVec, 1> &Actions,
const SizeAndActionsVec &SizeAndActions) {
checkFullSizeAndActionsVector(SizeAndActions);
if (Actions.size() <= TypeIndex)
Actions.resize(TypeIndex + 1);
Actions[TypeIndex] = SizeAndActions;
}
static SizeAndAction findAction(const SizeAndActionsVec &Vec,
const uint32_t Size);
/// Returns the next action needed to get the scalar or pointer type closer
/// to being legal
/// E.g. findLegalAction({G_REM, 13}) should return
/// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will
/// probably be called, which should return (Lower, 32).
/// This is assuming the setScalarAction on G_REM was something like:
/// setScalarAction(G_REM, 0,
/// {{1, WidenScalar}, // bit sizes [ 1, 31[
/// {32, Lower}, // bit sizes [32, 33[
/// {33, NarrowScalar} // bit sizes [65, +inf[
/// });
std::pair<LegalizeAction, LLT>
findScalarLegalAction(const InstrAspect &Aspect) const;
/// Returns the next action needed towards legalizing the vector type.
std::pair<LegalizeAction, LLT>
findVectorLegalAction(const InstrAspect &Aspect) const;
static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;
// Data structures used temporarily during construction of legality data:
using TypeMap = DenseMap<LLT, LegalizeAction>;
SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1];
SmallVector<SizeChangeStrategy, 1>
ScalarSizeChangeStrategies[LastOp - FirstOp + 1];
SmallVector<SizeChangeStrategy, 1>
VectorElementSizeChangeStrategies[LastOp - FirstOp + 1];
bool TablesInitialized;
// Data structures used by getAction:
SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1];
SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1];
std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
AddrSpace2PointerActions[LastOp - FirstOp + 1];
std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
NumElements2Actions[LastOp - FirstOp + 1];
LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1];
};
#ifndef NDEBUG
/// Checks that MIR is fully legal, returns an illegal instruction if it's not,
/// nullptr otherwise
const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF);
#endif
} // end namespace llvm.
#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
|