1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
//===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// PBQP Graph class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_GRAPH_H
#define LLVM_CODEGEN_PBQP_GRAPH_H
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <limits>
#include <vector>
namespace llvm {
namespace PBQP {
class GraphBase {
public:
using NodeId = unsigned;
using EdgeId = unsigned;
/// Returns a value representing an invalid (non-existent) node.
static NodeId invalidNodeId() {
return std::numeric_limits<NodeId>::max();
}
/// Returns a value representing an invalid (non-existent) edge.
static EdgeId invalidEdgeId() {
return std::numeric_limits<EdgeId>::max();
}
};
/// PBQP Graph class.
/// Instances of this class describe PBQP problems.
///
template <typename SolverT>
class Graph : public GraphBase {
private:
using CostAllocator = typename SolverT::CostAllocator;
public:
using RawVector = typename SolverT::RawVector;
using RawMatrix = typename SolverT::RawMatrix;
using Vector = typename SolverT::Vector;
using Matrix = typename SolverT::Matrix;
using VectorPtr = typename CostAllocator::VectorPtr;
using MatrixPtr = typename CostAllocator::MatrixPtr;
using NodeMetadata = typename SolverT::NodeMetadata;
using EdgeMetadata = typename SolverT::EdgeMetadata;
using GraphMetadata = typename SolverT::GraphMetadata;
private:
class NodeEntry {
public:
using AdjEdgeList = std::vector<EdgeId>;
using AdjEdgeIdx = AdjEdgeList::size_type;
using AdjEdgeItr = AdjEdgeList::const_iterator;
NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {}
static AdjEdgeIdx getInvalidAdjEdgeIdx() {
return std::numeric_limits<AdjEdgeIdx>::max();
}
AdjEdgeIdx addAdjEdgeId(EdgeId EId) {
AdjEdgeIdx Idx = AdjEdgeIds.size();
AdjEdgeIds.push_back(EId);
return Idx;
}
void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) {
// Swap-and-pop for fast removal.
// 1) Update the adj index of the edge currently at back().
// 2) Move last Edge down to Idx.
// 3) pop_back()
// If Idx == size() - 1 then the setAdjEdgeIdx and swap are
// redundant, but both operations are cheap.
G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx);
AdjEdgeIds[Idx] = AdjEdgeIds.back();
AdjEdgeIds.pop_back();
}
const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; }
VectorPtr Costs;
NodeMetadata Metadata;
private:
AdjEdgeList AdjEdgeIds;
};
class EdgeEntry {
public:
EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs)
: Costs(std::move(Costs)) {
NIds[0] = N1Id;
NIds[1] = N2Id;
ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx();
ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx();
}
void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge already connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId);
}
void connect(Graph &G, EdgeId ThisEdgeId) {
connectToN(G, ThisEdgeId, 0);
connectToN(G, ThisEdgeId, 1);
}
void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) {
if (NId == NIds[0])
ThisEdgeAdjIdxs[0] = NewIdx;
else {
assert(NId == NIds[1] && "Edge not connected to NId");
ThisEdgeAdjIdxs[1] = NewIdx;
}
}
void disconnectFromN(Graph &G, unsigned NIdx) {
assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() &&
"Edge not connected to NIds[NIdx].");
NodeEntry &N = G.getNode(NIds[NIdx]);
N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]);
ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx();
}
void disconnectFrom(Graph &G, NodeId NId) {
if (NId == NIds[0])
disconnectFromN(G, 0);
else {
assert(NId == NIds[1] && "Edge does not connect NId");
disconnectFromN(G, 1);
}
}
NodeId getN1Id() const { return NIds[0]; }
NodeId getN2Id() const { return NIds[1]; }
MatrixPtr Costs;
EdgeMetadata Metadata;
private:
NodeId NIds[2];
typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2];
};
// ----- MEMBERS -----
GraphMetadata Metadata;
CostAllocator CostAlloc;
SolverT *Solver = nullptr;
using NodeVector = std::vector<NodeEntry>;
using FreeNodeVector = std::vector<NodeId>;
NodeVector Nodes;
FreeNodeVector FreeNodeIds;
using EdgeVector = std::vector<EdgeEntry>;
using FreeEdgeVector = std::vector<EdgeId>;
EdgeVector Edges;
FreeEdgeVector FreeEdgeIds;
Graph(const Graph &Other) {}
// ----- INTERNAL METHODS -----
NodeEntry &getNode(NodeId NId) {
assert(NId < Nodes.size() && "Out of bound NodeId");
return Nodes[NId];
}
const NodeEntry &getNode(NodeId NId) const {
assert(NId < Nodes.size() && "Out of bound NodeId");
return Nodes[NId];
}
EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; }
const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; }
NodeId addConstructedNode(NodeEntry N) {
NodeId NId = 0;
if (!FreeNodeIds.empty()) {
NId = FreeNodeIds.back();
FreeNodeIds.pop_back();
Nodes[NId] = std::move(N);
} else {
NId = Nodes.size();
Nodes.push_back(std::move(N));
}
return NId;
}
EdgeId addConstructedEdge(EdgeEntry E) {
assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() &&
"Attempt to add duplicate edge.");
EdgeId EId = 0;
if (!FreeEdgeIds.empty()) {
EId = FreeEdgeIds.back();
FreeEdgeIds.pop_back();
Edges[EId] = std::move(E);
} else {
EId = Edges.size();
Edges.push_back(std::move(E));
}
EdgeEntry &NE = getEdge(EId);
// Add the edge to the adjacency sets of its nodes.
NE.connect(*this, EId);
return EId;
}
void operator=(const Graph &Other) {}
public:
using AdjEdgeItr = typename NodeEntry::AdjEdgeItr;
class NodeItr {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = NodeId;
using difference_type = int;
using pointer = NodeId *;
using reference = NodeId &;
NodeItr(NodeId CurNId, const Graph &G)
: CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) {
this->CurNId = findNextInUse(CurNId); // Move to first in-use node id
}
bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; }
bool operator!=(const NodeItr &O) const { return !(*this == O); }
NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; }
NodeId operator*() const { return CurNId; }
private:
NodeId findNextInUse(NodeId NId) const {
while (NId < EndNId && is_contained(FreeNodeIds, NId)) {
++NId;
}
return NId;
}
NodeId CurNId, EndNId;
const FreeNodeVector &FreeNodeIds;
};
class EdgeItr {
public:
EdgeItr(EdgeId CurEId, const Graph &G)
: CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) {
this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id
}
bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; }
bool operator!=(const EdgeItr &O) const { return !(*this == O); }
EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; }
EdgeId operator*() const { return CurEId; }
private:
EdgeId findNextInUse(EdgeId EId) const {
while (EId < EndEId && is_contained(FreeEdgeIds, EId)) {
++EId;
}
return EId;
}
EdgeId CurEId, EndEId;
const FreeEdgeVector &FreeEdgeIds;
};
class NodeIdSet {
public:
NodeIdSet(const Graph &G) : G(G) {}
NodeItr begin() const { return NodeItr(0, G); }
NodeItr end() const { return NodeItr(G.Nodes.size(), G); }
bool empty() const { return G.Nodes.empty(); }
typename NodeVector::size_type size() const {
return G.Nodes.size() - G.FreeNodeIds.size();
}
private:
const Graph& G;
};
class EdgeIdSet {
public:
EdgeIdSet(const Graph &G) : G(G) {}
EdgeItr begin() const { return EdgeItr(0, G); }
EdgeItr end() const { return EdgeItr(G.Edges.size(), G); }
bool empty() const { return G.Edges.empty(); }
typename NodeVector::size_type size() const {
return G.Edges.size() - G.FreeEdgeIds.size();
}
private:
const Graph& G;
};
class AdjEdgeIdSet {
public:
AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {}
typename NodeEntry::AdjEdgeItr begin() const {
return NE.getAdjEdgeIds().begin();
}
typename NodeEntry::AdjEdgeItr end() const {
return NE.getAdjEdgeIds().end();
}
bool empty() const { return NE.getAdjEdgeIds().empty(); }
typename NodeEntry::AdjEdgeList::size_type size() const {
return NE.getAdjEdgeIds().size();
}
private:
const NodeEntry &NE;
};
/// Construct an empty PBQP graph.
Graph() = default;
/// Construct an empty PBQP graph with the given graph metadata.
Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {}
/// Get a reference to the graph metadata.
GraphMetadata& getMetadata() { return Metadata; }
/// Get a const-reference to the graph metadata.
const GraphMetadata& getMetadata() const { return Metadata; }
/// Lock this graph to the given solver instance in preparation
/// for running the solver. This method will call solver.handleAddNode for
/// each node in the graph, and handleAddEdge for each edge, to give the
/// solver an opportunity to set up any requried metadata.
void setSolver(SolverT &S) {
assert(!Solver && "Solver already set. Call unsetSolver().");
Solver = &S;
for (auto NId : nodeIds())
Solver->handleAddNode(NId);
for (auto EId : edgeIds())
Solver->handleAddEdge(EId);
}
/// Release from solver instance.
void unsetSolver() {
assert(Solver && "Solver not set.");
Solver = nullptr;
}
/// Add a node with the given costs.
/// @param Costs Cost vector for the new node.
/// @return Node iterator for the added node.
template <typename OtherVectorT>
NodeId addNode(OtherVectorT Costs) {
// Get cost vector from the problem domain
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// Add a node bypassing the cost allocator.
/// @param Costs Cost vector ptr for the new node (must be convertible to
/// VectorPtr).
/// @return Node iterator for the added node.
///
/// This method allows for fast addition of a node whose costs don't need
/// to be passed through the cost allocator. The most common use case for
/// this is when duplicating costs from an existing node (when using a
/// pooling allocator). These have already been uniqued, so we can avoid
/// re-constructing and re-uniquing them by attaching them directly to the
/// new node.
template <typename OtherVectorPtrT>
NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) {
NodeId NId = addConstructedNode(NodeEntry(Costs));
if (Solver)
Solver->handleAddNode(NId);
return NId;
}
/// Add an edge between the given nodes with the given costs.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @param Costs Cost matrix for new edge.
/// @return Edge iterator for the added edge.
template <typename OtherVectorT>
EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs.getRows() &&
getNodeCosts(N2Id).getLength() == Costs.getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// Add an edge bypassing the cost allocator.
/// @param N1Id First node.
/// @param N2Id Second node.
/// @param Costs Cost matrix for new edge.
/// @return Edge iterator for the added edge.
///
/// This method allows for fast addition of an edge whose costs don't need
/// to be passed through the cost allocator. The most common use case for
/// this is when duplicating costs from an existing edge (when using a
/// pooling allocator). These have already been uniqued, so we can avoid
/// re-constructing and re-uniquing them by attaching them directly to the
/// new edge.
template <typename OtherMatrixPtrT>
NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id,
OtherMatrixPtrT Costs) {
assert(getNodeCosts(N1Id).getLength() == Costs->getRows() &&
getNodeCosts(N2Id).getLength() == Costs->getCols() &&
"Matrix dimensions mismatch.");
// Get cost matrix from the problem domain.
EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs));
if (Solver)
Solver->handleAddEdge(EId);
return EId;
}
/// Returns true if the graph is empty.
bool empty() const { return NodeIdSet(*this).empty(); }
NodeIdSet nodeIds() const { return NodeIdSet(*this); }
EdgeIdSet edgeIds() const { return EdgeIdSet(*this); }
AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); }
/// Get the number of nodes in the graph.
/// @return Number of nodes in the graph.
unsigned getNumNodes() const { return NodeIdSet(*this).size(); }
/// Get the number of edges in the graph.
/// @return Number of edges in the graph.
unsigned getNumEdges() const { return EdgeIdSet(*this).size(); }
/// Set a node's cost vector.
/// @param NId Node to update.
/// @param Costs New costs to set.
template <typename OtherVectorT>
void setNodeCosts(NodeId NId, OtherVectorT Costs) {
VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs));
if (Solver)
Solver->handleSetNodeCosts(NId, *AllocatedCosts);
getNode(NId).Costs = AllocatedCosts;
}
/// Get a VectorPtr to a node's cost vector. Rarely useful - use
/// getNodeCosts where possible.
/// @param NId Node id.
/// @return VectorPtr to node cost vector.
///
/// This method is primarily useful for duplicating costs quickly by
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
/// getNodeCosts when dealing with node cost values.
const VectorPtr& getNodeCostsPtr(NodeId NId) const {
return getNode(NId).Costs;
}
/// Get a node's cost vector.
/// @param NId Node id.
/// @return Node cost vector.
const Vector& getNodeCosts(NodeId NId) const {
return *getNodeCostsPtr(NId);
}
NodeMetadata& getNodeMetadata(NodeId NId) {
return getNode(NId).Metadata;
}
const NodeMetadata& getNodeMetadata(NodeId NId) const {
return getNode(NId).Metadata;
}
typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const {
return getNode(NId).getAdjEdgeIds().size();
}
/// Update an edge's cost matrix.
/// @param EId Edge id.
/// @param Costs New cost matrix.
template <typename OtherMatrixT>
void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) {
MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs));
if (Solver)
Solver->handleUpdateCosts(EId, *AllocatedCosts);
getEdge(EId).Costs = AllocatedCosts;
}
/// Get a MatrixPtr to a node's cost matrix. Rarely useful - use
/// getEdgeCosts where possible.
/// @param EId Edge id.
/// @return MatrixPtr to edge cost matrix.
///
/// This method is primarily useful for duplicating costs quickly by
/// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer
/// getEdgeCosts when dealing with edge cost values.
const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const {
return getEdge(EId).Costs;
}
/// Get an edge's cost matrix.
/// @param EId Edge id.
/// @return Edge cost matrix.
const Matrix& getEdgeCosts(EdgeId EId) const {
return *getEdge(EId).Costs;
}
EdgeMetadata& getEdgeMetadata(EdgeId EId) {
return getEdge(EId).Metadata;
}
const EdgeMetadata& getEdgeMetadata(EdgeId EId) const {
return getEdge(EId).Metadata;
}
/// Get the first node connected to this edge.
/// @param EId Edge id.
/// @return The first node connected to the given edge.
NodeId getEdgeNode1Id(EdgeId EId) const {
return getEdge(EId).getN1Id();
}
/// Get the second node connected to this edge.
/// @param EId Edge id.
/// @return The second node connected to the given edge.
NodeId getEdgeNode2Id(EdgeId EId) const {
return getEdge(EId).getN2Id();
}
/// Get the "other" node connected to this edge.
/// @param EId Edge id.
/// @param NId Node id for the "given" node.
/// @return The iterator for the "other" node connected to this edge.
NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
if (E.getN1Id() == NId) {
return E.getN2Id();
} // else
return E.getN1Id();
}
/// Get the edge connecting two nodes.
/// @param N1Id First node id.
/// @param N2Id Second node id.
/// @return An id for edge (N1Id, N2Id) if such an edge exists,
/// otherwise returns an invalid edge id.
EdgeId findEdge(NodeId N1Id, NodeId N2Id) {
for (auto AEId : adjEdgeIds(N1Id)) {
if ((getEdgeNode1Id(AEId) == N2Id) ||
(getEdgeNode2Id(AEId) == N2Id)) {
return AEId;
}
}
return invalidEdgeId();
}
/// Remove a node from the graph.
/// @param NId Node id.
void removeNode(NodeId NId) {
if (Solver)
Solver->handleRemoveNode(NId);
NodeEntry &N = getNode(NId);
// TODO: Can this be for-each'd?
for (AdjEdgeItr AEItr = N.adjEdgesBegin(),
AEEnd = N.adjEdgesEnd();
AEItr != AEEnd;) {
EdgeId EId = *AEItr;
++AEItr;
removeEdge(EId);
}
FreeNodeIds.push_back(NId);
}
/// Disconnect an edge from the given node.
///
/// Removes the given edge from the adjacency list of the given node.
/// This operation leaves the edge in an 'asymmetric' state: It will no
/// longer appear in an iteration over the given node's (NId's) edges, but
/// will appear in an iteration over the 'other', unnamed node's edges.
///
/// This does not correspond to any normal graph operation, but exists to
/// support efficient PBQP graph-reduction based solvers. It is used to
/// 'effectively' remove the unnamed node from the graph while the solver
/// is performing the reduction. The solver will later call reconnectNode
/// to restore the edge in the named node's adjacency list.
///
/// Since the degree of a node is the number of connected edges,
/// disconnecting an edge from a node 'u' will cause the degree of 'u' to
/// drop by 1.
///
/// A disconnected edge WILL still appear in an iteration over the graph
/// edges.
///
/// A disconnected edge should not be removed from the graph, it should be
/// reconnected first.
///
/// A disconnected edge can be reconnected by calling the reconnectEdge
/// method.
void disconnectEdge(EdgeId EId, NodeId NId) {
if (Solver)
Solver->handleDisconnectEdge(EId, NId);
EdgeEntry &E = getEdge(EId);
E.disconnectFrom(*this, NId);
}
/// Convenience method to disconnect all neighbours from the given
/// node.
void disconnectAllNeighborsFromNode(NodeId NId) {
for (auto AEId : adjEdgeIds(NId))
disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId));
}
/// Re-attach an edge to its nodes.
///
/// Adds an edge that had been previously disconnected back into the
/// adjacency set of the nodes that the edge connects.
void reconnectEdge(EdgeId EId, NodeId NId) {
EdgeEntry &E = getEdge(EId);
E.connectTo(*this, EId, NId);
if (Solver)
Solver->handleReconnectEdge(EId, NId);
}
/// Remove an edge from the graph.
/// @param EId Edge id.
void removeEdge(EdgeId EId) {
if (Solver)
Solver->handleRemoveEdge(EId);
EdgeEntry &E = getEdge(EId);
E.disconnect();
FreeEdgeIds.push_back(EId);
Edges[EId].invalidate();
}
/// Remove all nodes and edges from the graph.
void clear() {
Nodes.clear();
FreeNodeIds.clear();
Edges.clear();
FreeEdgeIds.clear();
}
};
} // end namespace PBQP
} // end namespace llvm
#endif // LLVM_CODEGEN_PBQP_GRAPH_HPP
|