1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//===- ReductionRules.h - Reduction Rules -----------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Reduction Rules.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
#define LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
#include "Graph.h"
#include "Math.h"
#include "Solution.h"
#include <cassert>
#include <limits>
namespace llvm {
namespace PBQP {
/// Reduce a node of degree one.
///
/// Propagate costs from the given node, which must be of degree one, to its
/// neighbor. Notify the problem domain.
template <typename GraphT>
void applyR1(GraphT &G, typename GraphT::NodeId NId) {
using NodeId = typename GraphT::NodeId;
using EdgeId = typename GraphT::EdgeId;
using Vector = typename GraphT::Vector;
using Matrix = typename GraphT::Matrix;
using RawVector = typename GraphT::RawVector;
assert(G.getNodeDegree(NId) == 1 &&
"R1 applied to node with degree != 1.");
EdgeId EId = *G.adjEdgeIds(NId).begin();
NodeId MId = G.getEdgeOtherNodeId(EId, NId);
const Matrix &ECosts = G.getEdgeCosts(EId);
const Vector &XCosts = G.getNodeCosts(NId);
RawVector YCosts = G.getNodeCosts(MId);
// Duplicate a little to avoid transposing matrices.
if (NId == G.getEdgeNode1Id(EId)) {
for (unsigned j = 0; j < YCosts.getLength(); ++j) {
PBQPNum Min = ECosts[0][j] + XCosts[0];
for (unsigned i = 1; i < XCosts.getLength(); ++i) {
PBQPNum C = ECosts[i][j] + XCosts[i];
if (C < Min)
Min = C;
}
YCosts[j] += Min;
}
} else {
for (unsigned i = 0; i < YCosts.getLength(); ++i) {
PBQPNum Min = ECosts[i][0] + XCosts[0];
for (unsigned j = 1; j < XCosts.getLength(); ++j) {
PBQPNum C = ECosts[i][j] + XCosts[j];
if (C < Min)
Min = C;
}
YCosts[i] += Min;
}
}
G.setNodeCosts(MId, YCosts);
G.disconnectEdge(EId, MId);
}
template <typename GraphT>
void applyR2(GraphT &G, typename GraphT::NodeId NId) {
using NodeId = typename GraphT::NodeId;
using EdgeId = typename GraphT::EdgeId;
using Vector = typename GraphT::Vector;
using Matrix = typename GraphT::Matrix;
using RawMatrix = typename GraphT::RawMatrix;
assert(G.getNodeDegree(NId) == 2 &&
"R2 applied to node with degree != 2.");
const Vector &XCosts = G.getNodeCosts(NId);
typename GraphT::AdjEdgeItr AEItr = G.adjEdgeIds(NId).begin();
EdgeId YXEId = *AEItr,
ZXEId = *(++AEItr);
NodeId YNId = G.getEdgeOtherNodeId(YXEId, NId),
ZNId = G.getEdgeOtherNodeId(ZXEId, NId);
bool FlipEdge1 = (G.getEdgeNode1Id(YXEId) == NId),
FlipEdge2 = (G.getEdgeNode1Id(ZXEId) == NId);
const Matrix *YXECosts = FlipEdge1 ?
new Matrix(G.getEdgeCosts(YXEId).transpose()) :
&G.getEdgeCosts(YXEId);
const Matrix *ZXECosts = FlipEdge2 ?
new Matrix(G.getEdgeCosts(ZXEId).transpose()) :
&G.getEdgeCosts(ZXEId);
unsigned XLen = XCosts.getLength(),
YLen = YXECosts->getRows(),
ZLen = ZXECosts->getRows();
RawMatrix Delta(YLen, ZLen);
for (unsigned i = 0; i < YLen; ++i) {
for (unsigned j = 0; j < ZLen; ++j) {
PBQPNum Min = (*YXECosts)[i][0] + (*ZXECosts)[j][0] + XCosts[0];
for (unsigned k = 1; k < XLen; ++k) {
PBQPNum C = (*YXECosts)[i][k] + (*ZXECosts)[j][k] + XCosts[k];
if (C < Min) {
Min = C;
}
}
Delta[i][j] = Min;
}
}
if (FlipEdge1)
delete YXECosts;
if (FlipEdge2)
delete ZXECosts;
EdgeId YZEId = G.findEdge(YNId, ZNId);
if (YZEId == G.invalidEdgeId()) {
YZEId = G.addEdge(YNId, ZNId, Delta);
} else {
const Matrix &YZECosts = G.getEdgeCosts(YZEId);
if (YNId == G.getEdgeNode1Id(YZEId)) {
G.updateEdgeCosts(YZEId, Delta + YZECosts);
} else {
G.updateEdgeCosts(YZEId, Delta.transpose() + YZECosts);
}
}
G.disconnectEdge(YXEId, YNId);
G.disconnectEdge(ZXEId, ZNId);
// TODO: Try to normalize newly added/modified edge.
}
#ifndef NDEBUG
// Does this Cost vector have any register options ?
template <typename VectorT>
bool hasRegisterOptions(const VectorT &V) {
unsigned VL = V.getLength();
// An empty or spill only cost vector does not provide any register option.
if (VL <= 1)
return false;
// If there are registers in the cost vector, but all of them have infinite
// costs, then ... there is no available register.
for (unsigned i = 1; i < VL; ++i)
if (V[i] != std::numeric_limits<PBQP::PBQPNum>::infinity())
return true;
return false;
}
#endif
// Find a solution to a fully reduced graph by backpropagation.
//
// Given a graph and a reduction order, pop each node from the reduction
// order and greedily compute a minimum solution based on the node costs, and
// the dependent costs due to previously solved nodes.
//
// Note - This does not return the graph to its original (pre-reduction)
// state: the existing solvers destructively alter the node and edge
// costs. Given that, the backpropagate function doesn't attempt to
// replace the edges either, but leaves the graph in its reduced
// state.
template <typename GraphT, typename StackT>
Solution backpropagate(GraphT& G, StackT stack) {
using NodeId = GraphBase::NodeId;
using Matrix = typename GraphT::Matrix;
using RawVector = typename GraphT::RawVector;
Solution s;
while (!stack.empty()) {
NodeId NId = stack.back();
stack.pop_back();
RawVector v = G.getNodeCosts(NId);
#ifndef NDEBUG
// Although a conservatively allocatable node can be allocated to a register,
// spilling it may provide a lower cost solution. Assert here that spilling
// is done by choice, not because there were no register available.
if (G.getNodeMetadata(NId).wasConservativelyAllocatable())
assert(hasRegisterOptions(v) && "A conservatively allocatable node "
"must have available register options");
#endif
for (auto EId : G.adjEdgeIds(NId)) {
const Matrix& edgeCosts = G.getEdgeCosts(EId);
if (NId == G.getEdgeNode1Id(EId)) {
NodeId mId = G.getEdgeNode2Id(EId);
v += edgeCosts.getColAsVector(s.getSelection(mId));
} else {
NodeId mId = G.getEdgeNode1Id(EId);
v += edgeCosts.getRowAsVector(s.getSelection(mId));
}
}
s.setSelection(NId, v.minIndex());
}
return s;
}
} // end namespace PBQP
} // end namespace llvm
#endif // LLVM_CODEGEN_PBQP_REDUCTIONRULES_H
|