1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
|
//===------- RPCUTils.h - Utilities for building RPC APIs -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Utilities to support construction of simple RPC APIs.
//
// The RPC utilities aim for ease of use (minimal conceptual overhead) for C++
// programmers, high performance, low memory overhead, and efficient use of the
// communications channel.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
#define LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H
#include <map>
#include <thread>
#include <vector>
#include "llvm/ADT/STLExtras.h"
#include "llvm/ExecutionEngine/Orc/OrcError.h"
#include "llvm/ExecutionEngine/Orc/RPCSerialization.h"
#include <future>
namespace llvm {
namespace orc {
namespace rpc {
/// Base class of all fatal RPC errors (those that necessarily result in the
/// termination of the RPC session).
class RPCFatalError : public ErrorInfo<RPCFatalError> {
public:
static char ID;
};
/// RPCConnectionClosed is returned from RPC operations if the RPC connection
/// has already been closed due to either an error or graceful disconnection.
class ConnectionClosed : public ErrorInfo<ConnectionClosed> {
public:
static char ID;
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
};
/// BadFunctionCall is returned from handleOne when the remote makes a call with
/// an unrecognized function id.
///
/// This error is fatal because Orc RPC needs to know how to parse a function
/// call to know where the next call starts, and if it doesn't recognize the
/// function id it cannot parse the call.
template <typename FnIdT, typename SeqNoT>
class BadFunctionCall
: public ErrorInfo<BadFunctionCall<FnIdT, SeqNoT>, RPCFatalError> {
public:
static char ID;
BadFunctionCall(FnIdT FnId, SeqNoT SeqNo)
: FnId(std::move(FnId)), SeqNo(std::move(SeqNo)) {}
std::error_code convertToErrorCode() const override {
return orcError(OrcErrorCode::UnexpectedRPCCall);
}
void log(raw_ostream &OS) const override {
OS << "Call to invalid RPC function id '" << FnId << "' with "
"sequence number " << SeqNo;
}
private:
FnIdT FnId;
SeqNoT SeqNo;
};
template <typename FnIdT, typename SeqNoT>
char BadFunctionCall<FnIdT, SeqNoT>::ID = 0;
/// InvalidSequenceNumberForResponse is returned from handleOne when a response
/// call arrives with a sequence number that doesn't correspond to any in-flight
/// function call.
///
/// This error is fatal because Orc RPC needs to know how to parse the rest of
/// the response call to know where the next call starts, and if it doesn't have
/// a result parser for this sequence number it can't do that.
template <typename SeqNoT>
class InvalidSequenceNumberForResponse
: public ErrorInfo<InvalidSequenceNumberForResponse<SeqNoT>, RPCFatalError> {
public:
static char ID;
InvalidSequenceNumberForResponse(SeqNoT SeqNo)
: SeqNo(std::move(SeqNo)) {}
std::error_code convertToErrorCode() const override {
return orcError(OrcErrorCode::UnexpectedRPCCall);
};
void log(raw_ostream &OS) const override {
OS << "Response has unknown sequence number " << SeqNo;
}
private:
SeqNoT SeqNo;
};
template <typename SeqNoT>
char InvalidSequenceNumberForResponse<SeqNoT>::ID = 0;
/// This non-fatal error will be passed to asynchronous result handlers in place
/// of a result if the connection goes down before a result returns, or if the
/// function to be called cannot be negotiated with the remote.
class ResponseAbandoned : public ErrorInfo<ResponseAbandoned> {
public:
static char ID;
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
};
/// This error is returned if the remote does not have a handler installed for
/// the given RPC function.
class CouldNotNegotiate : public ErrorInfo<CouldNotNegotiate> {
public:
static char ID;
CouldNotNegotiate(std::string Signature);
std::error_code convertToErrorCode() const override;
void log(raw_ostream &OS) const override;
const std::string &getSignature() const { return Signature; }
private:
std::string Signature;
};
template <typename DerivedFunc, typename FnT> class Function;
// RPC Function class.
// DerivedFunc should be a user defined class with a static 'getName()' method
// returning a const char* representing the function's name.
template <typename DerivedFunc, typename RetT, typename... ArgTs>
class Function<DerivedFunc, RetT(ArgTs...)> {
public:
/// User defined function type.
using Type = RetT(ArgTs...);
/// Return type.
using ReturnType = RetT;
/// Returns the full function prototype as a string.
static const char *getPrototype() {
std::lock_guard<std::mutex> Lock(NameMutex);
if (Name.empty())
raw_string_ostream(Name)
<< RPCTypeName<RetT>::getName() << " " << DerivedFunc::getName()
<< "(" << llvm::orc::rpc::RPCTypeNameSequence<ArgTs...>() << ")";
return Name.data();
}
private:
static std::mutex NameMutex;
static std::string Name;
};
template <typename DerivedFunc, typename RetT, typename... ArgTs>
std::mutex Function<DerivedFunc, RetT(ArgTs...)>::NameMutex;
template <typename DerivedFunc, typename RetT, typename... ArgTs>
std::string Function<DerivedFunc, RetT(ArgTs...)>::Name;
/// Allocates RPC function ids during autonegotiation.
/// Specializations of this class must provide four members:
///
/// static T getInvalidId():
/// Should return a reserved id that will be used to represent missing
/// functions during autonegotiation.
///
/// static T getResponseId():
/// Should return a reserved id that will be used to send function responses
/// (return values).
///
/// static T getNegotiateId():
/// Should return a reserved id for the negotiate function, which will be used
/// to negotiate ids for user defined functions.
///
/// template <typename Func> T allocate():
/// Allocate a unique id for function Func.
template <typename T, typename = void> class RPCFunctionIdAllocator;
/// This specialization of RPCFunctionIdAllocator provides a default
/// implementation for integral types.
template <typename T>
class RPCFunctionIdAllocator<
T, typename std::enable_if<std::is_integral<T>::value>::type> {
public:
static T getInvalidId() { return T(0); }
static T getResponseId() { return T(1); }
static T getNegotiateId() { return T(2); }
template <typename Func> T allocate() { return NextId++; }
private:
T NextId = 3;
};
namespace detail {
// FIXME: Remove MSVCPError/MSVCPExpected once MSVC's future implementation
// supports classes without default constructors.
#ifdef _MSC_VER
namespace msvc_hacks {
// Work around MSVC's future implementation's use of default constructors:
// A default constructed value in the promise will be overwritten when the
// real error is set - so the default constructed Error has to be checked
// already.
class MSVCPError : public Error {
public:
MSVCPError() { (void)!!*this; }
MSVCPError(MSVCPError &&Other) : Error(std::move(Other)) {}
MSVCPError &operator=(MSVCPError Other) {
Error::operator=(std::move(Other));
return *this;
}
MSVCPError(Error Err) : Error(std::move(Err)) {}
};
// Work around MSVC's future implementation, similar to MSVCPError.
template <typename T> class MSVCPExpected : public Expected<T> {
public:
MSVCPExpected()
: Expected<T>(make_error<StringError>("", inconvertibleErrorCode())) {
consumeError(this->takeError());
}
MSVCPExpected(MSVCPExpected &&Other) : Expected<T>(std::move(Other)) {}
MSVCPExpected &operator=(MSVCPExpected &&Other) {
Expected<T>::operator=(std::move(Other));
return *this;
}
MSVCPExpected(Error Err) : Expected<T>(std::move(Err)) {}
template <typename OtherT>
MSVCPExpected(
OtherT &&Val,
typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
nullptr)
: Expected<T>(std::move(Val)) {}
template <class OtherT>
MSVCPExpected(
Expected<OtherT> &&Other,
typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * =
nullptr)
: Expected<T>(std::move(Other)) {}
template <class OtherT>
explicit MSVCPExpected(
Expected<OtherT> &&Other,
typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
nullptr)
: Expected<T>(std::move(Other)) {}
};
} // end namespace msvc_hacks
#endif // _MSC_VER
/// Provides a typedef for a tuple containing the decayed argument types.
template <typename T> class FunctionArgsTuple;
template <typename RetT, typename... ArgTs>
class FunctionArgsTuple<RetT(ArgTs...)> {
public:
using Type = std::tuple<typename std::decay<
typename std::remove_reference<ArgTs>::type>::type...>;
};
// ResultTraits provides typedefs and utilities specific to the return type
// of functions.
template <typename RetT> class ResultTraits {
public:
// The return type wrapped in llvm::Expected.
using ErrorReturnType = Expected<RetT>;
#ifdef _MSC_VER
// The ErrorReturnType wrapped in a std::promise.
using ReturnPromiseType = std::promise<msvc_hacks::MSVCPExpected<RetT>>;
// The ErrorReturnType wrapped in a std::future.
using ReturnFutureType = std::future<msvc_hacks::MSVCPExpected<RetT>>;
#else
// The ErrorReturnType wrapped in a std::promise.
using ReturnPromiseType = std::promise<ErrorReturnType>;
// The ErrorReturnType wrapped in a std::future.
using ReturnFutureType = std::future<ErrorReturnType>;
#endif
// Create a 'blank' value of the ErrorReturnType, ready and safe to
// overwrite.
static ErrorReturnType createBlankErrorReturnValue() {
return ErrorReturnType(RetT());
}
// Consume an abandoned ErrorReturnType.
static void consumeAbandoned(ErrorReturnType RetOrErr) {
consumeError(RetOrErr.takeError());
}
};
// ResultTraits specialization for void functions.
template <> class ResultTraits<void> {
public:
// For void functions, ErrorReturnType is llvm::Error.
using ErrorReturnType = Error;
#ifdef _MSC_VER
// The ErrorReturnType wrapped in a std::promise.
using ReturnPromiseType = std::promise<msvc_hacks::MSVCPError>;
// The ErrorReturnType wrapped in a std::future.
using ReturnFutureType = std::future<msvc_hacks::MSVCPError>;
#else
// The ErrorReturnType wrapped in a std::promise.
using ReturnPromiseType = std::promise<ErrorReturnType>;
// The ErrorReturnType wrapped in a std::future.
using ReturnFutureType = std::future<ErrorReturnType>;
#endif
// Create a 'blank' value of the ErrorReturnType, ready and safe to
// overwrite.
static ErrorReturnType createBlankErrorReturnValue() {
return ErrorReturnType::success();
}
// Consume an abandoned ErrorReturnType.
static void consumeAbandoned(ErrorReturnType Err) {
consumeError(std::move(Err));
}
};
// ResultTraits<Error> is equivalent to ResultTraits<void>. This allows
// handlers for void RPC functions to return either void (in which case they
// implicitly succeed) or Error (in which case their error return is
// propagated). See usage in HandlerTraits::runHandlerHelper.
template <> class ResultTraits<Error> : public ResultTraits<void> {};
// ResultTraits<Expected<T>> is equivalent to ResultTraits<T>. This allows
// handlers for RPC functions returning a T to return either a T (in which
// case they implicitly succeed) or Expected<T> (in which case their error
// return is propagated). See usage in HandlerTraits::runHandlerHelper.
template <typename RetT>
class ResultTraits<Expected<RetT>> : public ResultTraits<RetT> {};
// Determines whether an RPC function's defined error return type supports
// error return value.
template <typename T>
class SupportsErrorReturn {
public:
static const bool value = false;
};
template <>
class SupportsErrorReturn<Error> {
public:
static const bool value = true;
};
template <typename T>
class SupportsErrorReturn<Expected<T>> {
public:
static const bool value = true;
};
// RespondHelper packages return values based on whether or not the declared
// RPC function return type supports error returns.
template <bool FuncSupportsErrorReturn>
class RespondHelper;
// RespondHelper specialization for functions that support error returns.
template <>
class RespondHelper<true> {
public:
// Send Expected<T>.
template <typename WireRetT, typename HandlerRetT, typename ChannelT,
typename FunctionIdT, typename SequenceNumberT>
static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
SequenceNumberT SeqNo,
Expected<HandlerRetT> ResultOrErr) {
if (!ResultOrErr && ResultOrErr.template errorIsA<RPCFatalError>())
return ResultOrErr.takeError();
// Open the response message.
if (auto Err = C.startSendMessage(ResponseId, SeqNo))
return Err;
// Serialize the result.
if (auto Err =
SerializationTraits<ChannelT, WireRetT,
Expected<HandlerRetT>>::serialize(
C, std::move(ResultOrErr)))
return Err;
// Close the response message.
return C.endSendMessage();
}
template <typename ChannelT, typename FunctionIdT, typename SequenceNumberT>
static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
SequenceNumberT SeqNo, Error Err) {
if (Err && Err.isA<RPCFatalError>())
return Err;
if (auto Err2 = C.startSendMessage(ResponseId, SeqNo))
return Err2;
if (auto Err2 = serializeSeq(C, std::move(Err)))
return Err2;
return C.endSendMessage();
}
};
// RespondHelper specialization for functions that do not support error returns.
template <>
class RespondHelper<false> {
public:
template <typename WireRetT, typename HandlerRetT, typename ChannelT,
typename FunctionIdT, typename SequenceNumberT>
static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
SequenceNumberT SeqNo,
Expected<HandlerRetT> ResultOrErr) {
if (auto Err = ResultOrErr.takeError())
return Err;
// Open the response message.
if (auto Err = C.startSendMessage(ResponseId, SeqNo))
return Err;
// Serialize the result.
if (auto Err =
SerializationTraits<ChannelT, WireRetT, HandlerRetT>::serialize(
C, *ResultOrErr))
return Err;
// Close the response message.
return C.endSendMessage();
}
template <typename ChannelT, typename FunctionIdT, typename SequenceNumberT>
static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId,
SequenceNumberT SeqNo, Error Err) {
if (Err)
return Err;
if (auto Err2 = C.startSendMessage(ResponseId, SeqNo))
return Err2;
return C.endSendMessage();
}
};
// Send a response of the given wire return type (WireRetT) over the
// channel, with the given sequence number.
template <typename WireRetT, typename HandlerRetT, typename ChannelT,
typename FunctionIdT, typename SequenceNumberT>
Error respond(ChannelT &C, const FunctionIdT &ResponseId,
SequenceNumberT SeqNo, Expected<HandlerRetT> ResultOrErr) {
return RespondHelper<SupportsErrorReturn<WireRetT>::value>::
template sendResult<WireRetT>(C, ResponseId, SeqNo, std::move(ResultOrErr));
}
// Send an empty response message on the given channel to indicate that
// the handler ran.
template <typename WireRetT, typename ChannelT, typename FunctionIdT,
typename SequenceNumberT>
Error respond(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo,
Error Err) {
return RespondHelper<SupportsErrorReturn<WireRetT>::value>::
sendResult(C, ResponseId, SeqNo, std::move(Err));
}
// Converts a given type to the equivalent error return type.
template <typename T> class WrappedHandlerReturn {
public:
using Type = Expected<T>;
};
template <typename T> class WrappedHandlerReturn<Expected<T>> {
public:
using Type = Expected<T>;
};
template <> class WrappedHandlerReturn<void> {
public:
using Type = Error;
};
template <> class WrappedHandlerReturn<Error> {
public:
using Type = Error;
};
template <> class WrappedHandlerReturn<ErrorSuccess> {
public:
using Type = Error;
};
// Traits class that strips the response function from the list of handler
// arguments.
template <typename FnT> class AsyncHandlerTraits;
template <typename ResultT, typename... ArgTs>
class AsyncHandlerTraits<Error(std::function<Error(Expected<ResultT>)>, ArgTs...)> {
public:
using Type = Error(ArgTs...);
using ResultType = Expected<ResultT>;
};
template <typename... ArgTs>
class AsyncHandlerTraits<Error(std::function<Error(Error)>, ArgTs...)> {
public:
using Type = Error(ArgTs...);
using ResultType = Error;
};
template <typename... ArgTs>
class AsyncHandlerTraits<ErrorSuccess(std::function<Error(Error)>, ArgTs...)> {
public:
using Type = Error(ArgTs...);
using ResultType = Error;
};
template <typename... ArgTs>
class AsyncHandlerTraits<void(std::function<Error(Error)>, ArgTs...)> {
public:
using Type = Error(ArgTs...);
using ResultType = Error;
};
template <typename ResponseHandlerT, typename... ArgTs>
class AsyncHandlerTraits<Error(ResponseHandlerT, ArgTs...)> :
public AsyncHandlerTraits<Error(typename std::decay<ResponseHandlerT>::type,
ArgTs...)> {};
// This template class provides utilities related to RPC function handlers.
// The base case applies to non-function types (the template class is
// specialized for function types) and inherits from the appropriate
// speciilization for the given non-function type's call operator.
template <typename HandlerT>
class HandlerTraits : public HandlerTraits<decltype(
&std::remove_reference<HandlerT>::type::operator())> {
};
// Traits for handlers with a given function type.
template <typename RetT, typename... ArgTs>
class HandlerTraits<RetT(ArgTs...)> {
public:
// Function type of the handler.
using Type = RetT(ArgTs...);
// Return type of the handler.
using ReturnType = RetT;
// Call the given handler with the given arguments.
template <typename HandlerT, typename... TArgTs>
static typename WrappedHandlerReturn<RetT>::Type
unpackAndRun(HandlerT &Handler, std::tuple<TArgTs...> &Args) {
return unpackAndRunHelper(Handler, Args,
llvm::index_sequence_for<TArgTs...>());
}
// Call the given handler with the given arguments.
template <typename HandlerT, typename ResponderT, typename... TArgTs>
static Error unpackAndRunAsync(HandlerT &Handler, ResponderT &Responder,
std::tuple<TArgTs...> &Args) {
return unpackAndRunAsyncHelper(Handler, Responder, Args,
llvm::index_sequence_for<TArgTs...>());
}
// Call the given handler with the given arguments.
template <typename HandlerT>
static typename std::enable_if<
std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
Error>::type
run(HandlerT &Handler, ArgTs &&... Args) {
Handler(std::move(Args)...);
return Error::success();
}
template <typename HandlerT, typename... TArgTs>
static typename std::enable_if<
!std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value,
typename HandlerTraits<HandlerT>::ReturnType>::type
run(HandlerT &Handler, TArgTs... Args) {
return Handler(std::move(Args)...);
}
// Serialize arguments to the channel.
template <typename ChannelT, typename... CArgTs>
static Error serializeArgs(ChannelT &C, const CArgTs... CArgs) {
return SequenceSerialization<ChannelT, ArgTs...>::serialize(C, CArgs...);
}
// Deserialize arguments from the channel.
template <typename ChannelT, typename... CArgTs>
static Error deserializeArgs(ChannelT &C, std::tuple<CArgTs...> &Args) {
return deserializeArgsHelper(C, Args,
llvm::index_sequence_for<CArgTs...>());
}
private:
template <typename ChannelT, typename... CArgTs, size_t... Indexes>
static Error deserializeArgsHelper(ChannelT &C, std::tuple<CArgTs...> &Args,
llvm::index_sequence<Indexes...> _) {
return SequenceSerialization<ChannelT, ArgTs...>::deserialize(
C, std::get<Indexes>(Args)...);
}
template <typename HandlerT, typename ArgTuple, size_t... Indexes>
static typename WrappedHandlerReturn<
typename HandlerTraits<HandlerT>::ReturnType>::Type
unpackAndRunHelper(HandlerT &Handler, ArgTuple &Args,
llvm::index_sequence<Indexes...>) {
return run(Handler, std::move(std::get<Indexes>(Args))...);
}
template <typename HandlerT, typename ResponderT, typename ArgTuple,
size_t... Indexes>
static typename WrappedHandlerReturn<
typename HandlerTraits<HandlerT>::ReturnType>::Type
unpackAndRunAsyncHelper(HandlerT &Handler, ResponderT &Responder,
ArgTuple &Args,
llvm::index_sequence<Indexes...>) {
return run(Handler, Responder, std::move(std::get<Indexes>(Args))...);
}
};
// Handler traits for free functions.
template <typename RetT, typename... ArgTs>
class HandlerTraits<RetT(*)(ArgTs...)>
: public HandlerTraits<RetT(ArgTs...)> {};
// Handler traits for class methods (especially call operators for lambdas).
template <typename Class, typename RetT, typename... ArgTs>
class HandlerTraits<RetT (Class::*)(ArgTs...)>
: public HandlerTraits<RetT(ArgTs...)> {};
// Handler traits for const class methods (especially call operators for
// lambdas).
template <typename Class, typename RetT, typename... ArgTs>
class HandlerTraits<RetT (Class::*)(ArgTs...) const>
: public HandlerTraits<RetT(ArgTs...)> {};
// Utility to peel the Expected wrapper off a response handler error type.
template <typename HandlerT> class ResponseHandlerArg;
template <typename ArgT> class ResponseHandlerArg<Error(Expected<ArgT>)> {
public:
using ArgType = Expected<ArgT>;
using UnwrappedArgType = ArgT;
};
template <typename ArgT>
class ResponseHandlerArg<ErrorSuccess(Expected<ArgT>)> {
public:
using ArgType = Expected<ArgT>;
using UnwrappedArgType = ArgT;
};
template <> class ResponseHandlerArg<Error(Error)> {
public:
using ArgType = Error;
};
template <> class ResponseHandlerArg<ErrorSuccess(Error)> {
public:
using ArgType = Error;
};
// ResponseHandler represents a handler for a not-yet-received function call
// result.
template <typename ChannelT> class ResponseHandler {
public:
virtual ~ResponseHandler() {}
// Reads the function result off the wire and acts on it. The meaning of
// "act" will depend on how this method is implemented in any given
// ResponseHandler subclass but could, for example, mean running a
// user-specified handler or setting a promise value.
virtual Error handleResponse(ChannelT &C) = 0;
// Abandons this outstanding result.
virtual void abandon() = 0;
// Create an error instance representing an abandoned response.
static Error createAbandonedResponseError() {
return make_error<ResponseAbandoned>();
}
};
// ResponseHandler subclass for RPC functions with non-void returns.
template <typename ChannelT, typename FuncRetT, typename HandlerT>
class ResponseHandlerImpl : public ResponseHandler<ChannelT> {
public:
ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
// Handle the result by deserializing it from the channel then passing it
// to the user defined handler.
Error handleResponse(ChannelT &C) override {
using UnwrappedArgType = typename ResponseHandlerArg<
typename HandlerTraits<HandlerT>::Type>::UnwrappedArgType;
UnwrappedArgType Result;
if (auto Err =
SerializationTraits<ChannelT, FuncRetT,
UnwrappedArgType>::deserialize(C, Result))
return Err;
if (auto Err = C.endReceiveMessage())
return Err;
return Handler(std::move(Result));
}
// Abandon this response by calling the handler with an 'abandoned response'
// error.
void abandon() override {
if (auto Err = Handler(this->createAbandonedResponseError())) {
// Handlers should not fail when passed an abandoned response error.
report_fatal_error(std::move(Err));
}
}
private:
HandlerT Handler;
};
// ResponseHandler subclass for RPC functions with void returns.
template <typename ChannelT, typename HandlerT>
class ResponseHandlerImpl<ChannelT, void, HandlerT>
: public ResponseHandler<ChannelT> {
public:
ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
// Handle the result (no actual value, just a notification that the function
// has completed on the remote end) by calling the user-defined handler with
// Error::success().
Error handleResponse(ChannelT &C) override {
if (auto Err = C.endReceiveMessage())
return Err;
return Handler(Error::success());
}
// Abandon this response by calling the handler with an 'abandoned response'
// error.
void abandon() override {
if (auto Err = Handler(this->createAbandonedResponseError())) {
// Handlers should not fail when passed an abandoned response error.
report_fatal_error(std::move(Err));
}
}
private:
HandlerT Handler;
};
template <typename ChannelT, typename FuncRetT, typename HandlerT>
class ResponseHandlerImpl<ChannelT, Expected<FuncRetT>, HandlerT>
: public ResponseHandler<ChannelT> {
public:
ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
// Handle the result by deserializing it from the channel then passing it
// to the user defined handler.
Error handleResponse(ChannelT &C) override {
using HandlerArgType = typename ResponseHandlerArg<
typename HandlerTraits<HandlerT>::Type>::ArgType;
HandlerArgType Result((typename HandlerArgType::value_type()));
if (auto Err =
SerializationTraits<ChannelT, Expected<FuncRetT>,
HandlerArgType>::deserialize(C, Result))
return Err;
if (auto Err = C.endReceiveMessage())
return Err;
return Handler(std::move(Result));
}
// Abandon this response by calling the handler with an 'abandoned response'
// error.
void abandon() override {
if (auto Err = Handler(this->createAbandonedResponseError())) {
// Handlers should not fail when passed an abandoned response error.
report_fatal_error(std::move(Err));
}
}
private:
HandlerT Handler;
};
template <typename ChannelT, typename HandlerT>
class ResponseHandlerImpl<ChannelT, Error, HandlerT>
: public ResponseHandler<ChannelT> {
public:
ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {}
// Handle the result by deserializing it from the channel then passing it
// to the user defined handler.
Error handleResponse(ChannelT &C) override {
Error Result = Error::success();
if (auto Err =
SerializationTraits<ChannelT, Error, Error>::deserialize(C, Result))
return Err;
if (auto Err = C.endReceiveMessage())
return Err;
return Handler(std::move(Result));
}
// Abandon this response by calling the handler with an 'abandoned response'
// error.
void abandon() override {
if (auto Err = Handler(this->createAbandonedResponseError())) {
// Handlers should not fail when passed an abandoned response error.
report_fatal_error(std::move(Err));
}
}
private:
HandlerT Handler;
};
// Create a ResponseHandler from a given user handler.
template <typename ChannelT, typename FuncRetT, typename HandlerT>
std::unique_ptr<ResponseHandler<ChannelT>> createResponseHandler(HandlerT H) {
return llvm::make_unique<ResponseHandlerImpl<ChannelT, FuncRetT, HandlerT>>(
std::move(H));
}
// Helper for wrapping member functions up as functors. This is useful for
// installing methods as result handlers.
template <typename ClassT, typename RetT, typename... ArgTs>
class MemberFnWrapper {
public:
using MethodT = RetT (ClassT::*)(ArgTs...);
MemberFnWrapper(ClassT &Instance, MethodT Method)
: Instance(Instance), Method(Method) {}
RetT operator()(ArgTs &&... Args) {
return (Instance.*Method)(std::move(Args)...);
}
private:
ClassT &Instance;
MethodT Method;
};
// Helper that provides a Functor for deserializing arguments.
template <typename... ArgTs> class ReadArgs {
public:
Error operator()() { return Error::success(); }
};
template <typename ArgT, typename... ArgTs>
class ReadArgs<ArgT, ArgTs...> : public ReadArgs<ArgTs...> {
public:
ReadArgs(ArgT &Arg, ArgTs &... Args)
: ReadArgs<ArgTs...>(Args...), Arg(Arg) {}
Error operator()(ArgT &ArgVal, ArgTs &... ArgVals) {
this->Arg = std::move(ArgVal);
return ReadArgs<ArgTs...>::operator()(ArgVals...);
}
private:
ArgT &Arg;
};
// Manage sequence numbers.
template <typename SequenceNumberT> class SequenceNumberManager {
public:
// Reset, making all sequence numbers available.
void reset() {
std::lock_guard<std::mutex> Lock(SeqNoLock);
NextSequenceNumber = 0;
FreeSequenceNumbers.clear();
}
// Get the next available sequence number. Will re-use numbers that have
// been released.
SequenceNumberT getSequenceNumber() {
std::lock_guard<std::mutex> Lock(SeqNoLock);
if (FreeSequenceNumbers.empty())
return NextSequenceNumber++;
auto SequenceNumber = FreeSequenceNumbers.back();
FreeSequenceNumbers.pop_back();
return SequenceNumber;
}
// Release a sequence number, making it available for re-use.
void releaseSequenceNumber(SequenceNumberT SequenceNumber) {
std::lock_guard<std::mutex> Lock(SeqNoLock);
FreeSequenceNumbers.push_back(SequenceNumber);
}
private:
std::mutex SeqNoLock;
SequenceNumberT NextSequenceNumber = 0;
std::vector<SequenceNumberT> FreeSequenceNumbers;
};
// Checks that predicate P holds for each corresponding pair of type arguments
// from T1 and T2 tuple.
template <template <class, class> class P, typename T1Tuple, typename T2Tuple>
class RPCArgTypeCheckHelper;
template <template <class, class> class P>
class RPCArgTypeCheckHelper<P, std::tuple<>, std::tuple<>> {
public:
static const bool value = true;
};
template <template <class, class> class P, typename T, typename... Ts,
typename U, typename... Us>
class RPCArgTypeCheckHelper<P, std::tuple<T, Ts...>, std::tuple<U, Us...>> {
public:
static const bool value =
P<T, U>::value &&
RPCArgTypeCheckHelper<P, std::tuple<Ts...>, std::tuple<Us...>>::value;
};
template <template <class, class> class P, typename T1Sig, typename T2Sig>
class RPCArgTypeCheck {
public:
using T1Tuple = typename FunctionArgsTuple<T1Sig>::Type;
using T2Tuple = typename FunctionArgsTuple<T2Sig>::Type;
static_assert(std::tuple_size<T1Tuple>::value >=
std::tuple_size<T2Tuple>::value,
"Too many arguments to RPC call");
static_assert(std::tuple_size<T1Tuple>::value <=
std::tuple_size<T2Tuple>::value,
"Too few arguments to RPC call");
static const bool value = RPCArgTypeCheckHelper<P, T1Tuple, T2Tuple>::value;
};
template <typename ChannelT, typename WireT, typename ConcreteT>
class CanSerialize {
private:
using S = SerializationTraits<ChannelT, WireT, ConcreteT>;
template <typename T>
static std::true_type
check(typename std::enable_if<
std::is_same<decltype(T::serialize(std::declval<ChannelT &>(),
std::declval<const ConcreteT &>())),
Error>::value,
void *>::type);
template <typename> static std::false_type check(...);
public:
static const bool value = decltype(check<S>(0))::value;
};
template <typename ChannelT, typename WireT, typename ConcreteT>
class CanDeserialize {
private:
using S = SerializationTraits<ChannelT, WireT, ConcreteT>;
template <typename T>
static std::true_type
check(typename std::enable_if<
std::is_same<decltype(T::deserialize(std::declval<ChannelT &>(),
std::declval<ConcreteT &>())),
Error>::value,
void *>::type);
template <typename> static std::false_type check(...);
public:
static const bool value = decltype(check<S>(0))::value;
};
/// Contains primitive utilities for defining, calling and handling calls to
/// remote procedures. ChannelT is a bidirectional stream conforming to the
/// RPCChannel interface (see RPCChannel.h), FunctionIdT is a procedure
/// identifier type that must be serializable on ChannelT, and SequenceNumberT
/// is an integral type that will be used to number in-flight function calls.
///
/// These utilities support the construction of very primitive RPC utilities.
/// Their intent is to ensure correct serialization and deserialization of
/// procedure arguments, and to keep the client and server's view of the API in
/// sync.
template <typename ImplT, typename ChannelT, typename FunctionIdT,
typename SequenceNumberT>
class RPCEndpointBase {
protected:
class OrcRPCInvalid : public Function<OrcRPCInvalid, void()> {
public:
static const char *getName() { return "__orc_rpc$invalid"; }
};
class OrcRPCResponse : public Function<OrcRPCResponse, void()> {
public:
static const char *getName() { return "__orc_rpc$response"; }
};
class OrcRPCNegotiate
: public Function<OrcRPCNegotiate, FunctionIdT(std::string)> {
public:
static const char *getName() { return "__orc_rpc$negotiate"; }
};
// Helper predicate for testing for the presence of SerializeTraits
// serializers.
template <typename WireT, typename ConcreteT>
class CanSerializeCheck : detail::CanSerialize<ChannelT, WireT, ConcreteT> {
public:
using detail::CanSerialize<ChannelT, WireT, ConcreteT>::value;
static_assert(value, "Missing serializer for argument (Can't serialize the "
"first template type argument of CanSerializeCheck "
"from the second)");
};
// Helper predicate for testing for the presence of SerializeTraits
// deserializers.
template <typename WireT, typename ConcreteT>
class CanDeserializeCheck
: detail::CanDeserialize<ChannelT, WireT, ConcreteT> {
public:
using detail::CanDeserialize<ChannelT, WireT, ConcreteT>::value;
static_assert(value, "Missing deserializer for argument (Can't deserialize "
"the second template type argument of "
"CanDeserializeCheck from the first)");
};
public:
/// Construct an RPC instance on a channel.
RPCEndpointBase(ChannelT &C, bool LazyAutoNegotiation)
: C(C), LazyAutoNegotiation(LazyAutoNegotiation) {
// Hold ResponseId in a special variable, since we expect Response to be
// called relatively frequently, and want to avoid the map lookup.
ResponseId = FnIdAllocator.getResponseId();
RemoteFunctionIds[OrcRPCResponse::getPrototype()] = ResponseId;
// Register the negotiate function id and handler.
auto NegotiateId = FnIdAllocator.getNegotiateId();
RemoteFunctionIds[OrcRPCNegotiate::getPrototype()] = NegotiateId;
Handlers[NegotiateId] = wrapHandler<OrcRPCNegotiate>(
[this](const std::string &Name) { return handleNegotiate(Name); });
}
/// Negotiate a function id for Func with the other end of the channel.
template <typename Func> Error negotiateFunction(bool Retry = false) {
return getRemoteFunctionId<Func>(true, Retry).takeError();
}
/// Append a call Func, does not call send on the channel.
/// The first argument specifies a user-defined handler to be run when the
/// function returns. The handler should take an Expected<Func::ReturnType>,
/// or an Error (if Func::ReturnType is void). The handler will be called
/// with an error if the return value is abandoned due to a channel error.
template <typename Func, typename HandlerT, typename... ArgTs>
Error appendCallAsync(HandlerT Handler, const ArgTs &... Args) {
static_assert(
detail::RPCArgTypeCheck<CanSerializeCheck, typename Func::Type,
void(ArgTs...)>::value,
"");
// Look up the function ID.
FunctionIdT FnId;
if (auto FnIdOrErr = getRemoteFunctionId<Func>(LazyAutoNegotiation, false))
FnId = *FnIdOrErr;
else {
// Negotiation failed. Notify the handler then return the negotiate-failed
// error.
cantFail(Handler(make_error<ResponseAbandoned>()));
return FnIdOrErr.takeError();
}
SequenceNumberT SeqNo; // initialized in locked scope below.
{
// Lock the pending responses map and sequence number manager.
std::lock_guard<std::mutex> Lock(ResponsesMutex);
// Allocate a sequence number.
SeqNo = SequenceNumberMgr.getSequenceNumber();
assert(!PendingResponses.count(SeqNo) &&
"Sequence number already allocated");
// Install the user handler.
PendingResponses[SeqNo] =
detail::createResponseHandler<ChannelT, typename Func::ReturnType>(
std::move(Handler));
}
// Open the function call message.
if (auto Err = C.startSendMessage(FnId, SeqNo)) {
abandonPendingResponses();
return Err;
}
// Serialize the call arguments.
if (auto Err = detail::HandlerTraits<typename Func::Type>::serializeArgs(
C, Args...)) {
abandonPendingResponses();
return Err;
}
// Close the function call messagee.
if (auto Err = C.endSendMessage()) {
abandonPendingResponses();
return Err;
}
return Error::success();
}
Error sendAppendedCalls() { return C.send(); };
template <typename Func, typename HandlerT, typename... ArgTs>
Error callAsync(HandlerT Handler, const ArgTs &... Args) {
if (auto Err = appendCallAsync<Func>(std::move(Handler), Args...))
return Err;
return C.send();
}
/// Handle one incoming call.
Error handleOne() {
FunctionIdT FnId;
SequenceNumberT SeqNo;
if (auto Err = C.startReceiveMessage(FnId, SeqNo)) {
abandonPendingResponses();
return Err;
}
if (FnId == ResponseId)
return handleResponse(SeqNo);
auto I = Handlers.find(FnId);
if (I != Handlers.end())
return I->second(C, SeqNo);
// else: No handler found. Report error to client?
return make_error<BadFunctionCall<FunctionIdT, SequenceNumberT>>(FnId,
SeqNo);
}
/// Helper for handling setter procedures - this method returns a functor that
/// sets the variables referred to by Args... to values deserialized from the
/// channel.
/// E.g.
///
/// typedef Function<0, bool, int> Func1;
///
/// ...
/// bool B;
/// int I;
/// if (auto Err = expect<Func1>(Channel, readArgs(B, I)))
/// /* Handle Args */ ;
///
template <typename... ArgTs>
static detail::ReadArgs<ArgTs...> readArgs(ArgTs &... Args) {
return detail::ReadArgs<ArgTs...>(Args...);
}
/// Abandon all outstanding result handlers.
///
/// This will call all currently registered result handlers to receive an
/// "abandoned" error as their argument. This is used internally by the RPC
/// in error situations, but can also be called directly by clients who are
/// disconnecting from the remote and don't or can't expect responses to their
/// outstanding calls. (Especially for outstanding blocking calls, calling
/// this function may be necessary to avoid dead threads).
void abandonPendingResponses() {
// Lock the pending responses map and sequence number manager.
std::lock_guard<std::mutex> Lock(ResponsesMutex);
for (auto &KV : PendingResponses)
KV.second->abandon();
PendingResponses.clear();
SequenceNumberMgr.reset();
}
/// Remove the handler for the given function.
/// A handler must currently be registered for this function.
template <typename Func>
void removeHandler() {
auto IdItr = LocalFunctionIds.find(Func::getPrototype());
assert(IdItr != LocalFunctionIds.end() &&
"Function does not have a registered handler");
auto HandlerItr = Handlers.find(IdItr->second);
assert(HandlerItr != Handlers.end() &&
"Function does not have a registered handler");
Handlers.erase(HandlerItr);
}
/// Clear all handlers.
void clearHandlers() {
Handlers.clear();
}
protected:
FunctionIdT getInvalidFunctionId() const {
return FnIdAllocator.getInvalidId();
}
/// Add the given handler to the handler map and make it available for
/// autonegotiation and execution.
template <typename Func, typename HandlerT>
void addHandlerImpl(HandlerT Handler) {
static_assert(detail::RPCArgTypeCheck<
CanDeserializeCheck, typename Func::Type,
typename detail::HandlerTraits<HandlerT>::Type>::value,
"");
FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>();
LocalFunctionIds[Func::getPrototype()] = NewFnId;
Handlers[NewFnId] = wrapHandler<Func>(std::move(Handler));
}
template <typename Func, typename HandlerT>
void addAsyncHandlerImpl(HandlerT Handler) {
static_assert(detail::RPCArgTypeCheck<
CanDeserializeCheck, typename Func::Type,
typename detail::AsyncHandlerTraits<
typename detail::HandlerTraits<HandlerT>::Type
>::Type>::value,
"");
FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>();
LocalFunctionIds[Func::getPrototype()] = NewFnId;
Handlers[NewFnId] = wrapAsyncHandler<Func>(std::move(Handler));
}
Error handleResponse(SequenceNumberT SeqNo) {
using Handler = typename decltype(PendingResponses)::mapped_type;
Handler PRHandler;
{
// Lock the pending responses map and sequence number manager.
std::unique_lock<std::mutex> Lock(ResponsesMutex);
auto I = PendingResponses.find(SeqNo);
if (I != PendingResponses.end()) {
PRHandler = std::move(I->second);
PendingResponses.erase(I);
SequenceNumberMgr.releaseSequenceNumber(SeqNo);
} else {
// Unlock the pending results map to prevent recursive lock.
Lock.unlock();
abandonPendingResponses();
return make_error<
InvalidSequenceNumberForResponse<SequenceNumberT>>(SeqNo);
}
}
assert(PRHandler &&
"If we didn't find a response handler we should have bailed out");
if (auto Err = PRHandler->handleResponse(C)) {
abandonPendingResponses();
return Err;
}
return Error::success();
}
FunctionIdT handleNegotiate(const std::string &Name) {
auto I = LocalFunctionIds.find(Name);
if (I == LocalFunctionIds.end())
return getInvalidFunctionId();
return I->second;
}
// Find the remote FunctionId for the given function.
template <typename Func>
Expected<FunctionIdT> getRemoteFunctionId(bool NegotiateIfNotInMap,
bool NegotiateIfInvalid) {
bool DoNegotiate;
// Check if we already have a function id...
auto I = RemoteFunctionIds.find(Func::getPrototype());
if (I != RemoteFunctionIds.end()) {
// If it's valid there's nothing left to do.
if (I->second != getInvalidFunctionId())
return I->second;
DoNegotiate = NegotiateIfInvalid;
} else
DoNegotiate = NegotiateIfNotInMap;
// We don't have a function id for Func yet, but we're allowed to try to
// negotiate one.
if (DoNegotiate) {
auto &Impl = static_cast<ImplT &>(*this);
if (auto RemoteIdOrErr =
Impl.template callB<OrcRPCNegotiate>(Func::getPrototype())) {
RemoteFunctionIds[Func::getPrototype()] = *RemoteIdOrErr;
if (*RemoteIdOrErr == getInvalidFunctionId())
return make_error<CouldNotNegotiate>(Func::getPrototype());
return *RemoteIdOrErr;
} else
return RemoteIdOrErr.takeError();
}
// No key was available in the map and we weren't allowed to try to
// negotiate one, so return an unknown function error.
return make_error<CouldNotNegotiate>(Func::getPrototype());
}
using WrappedHandlerFn = std::function<Error(ChannelT &, SequenceNumberT)>;
// Wrap the given user handler in the necessary argument-deserialization code,
// result-serialization code, and call to the launch policy (if present).
template <typename Func, typename HandlerT>
WrappedHandlerFn wrapHandler(HandlerT Handler) {
return [this, Handler](ChannelT &Channel,
SequenceNumberT SeqNo) mutable -> Error {
// Start by deserializing the arguments.
using ArgsTuple =
typename detail::FunctionArgsTuple<
typename detail::HandlerTraits<HandlerT>::Type>::Type;
auto Args = std::make_shared<ArgsTuple>();
if (auto Err =
detail::HandlerTraits<typename Func::Type>::deserializeArgs(
Channel, *Args))
return Err;
// GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning
// for RPCArgs. Void cast RPCArgs to work around this for now.
// FIXME: Remove this workaround once we can assume a working GCC version.
(void)Args;
// End receieve message, unlocking the channel for reading.
if (auto Err = Channel.endReceiveMessage())
return Err;
using HTraits = detail::HandlerTraits<HandlerT>;
using FuncReturn = typename Func::ReturnType;
return detail::respond<FuncReturn>(Channel, ResponseId, SeqNo,
HTraits::unpackAndRun(Handler, *Args));
};
}
// Wrap the given user handler in the necessary argument-deserialization code,
// result-serialization code, and call to the launch policy (if present).
template <typename Func, typename HandlerT>
WrappedHandlerFn wrapAsyncHandler(HandlerT Handler) {
return [this, Handler](ChannelT &Channel,
SequenceNumberT SeqNo) mutable -> Error {
// Start by deserializing the arguments.
using AHTraits = detail::AsyncHandlerTraits<
typename detail::HandlerTraits<HandlerT>::Type>;
using ArgsTuple =
typename detail::FunctionArgsTuple<typename AHTraits::Type>::Type;
auto Args = std::make_shared<ArgsTuple>();
if (auto Err =
detail::HandlerTraits<typename Func::Type>::deserializeArgs(
Channel, *Args))
return Err;
// GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning
// for RPCArgs. Void cast RPCArgs to work around this for now.
// FIXME: Remove this workaround once we can assume a working GCC version.
(void)Args;
// End receieve message, unlocking the channel for reading.
if (auto Err = Channel.endReceiveMessage())
return Err;
using HTraits = detail::HandlerTraits<HandlerT>;
using FuncReturn = typename Func::ReturnType;
auto Responder =
[this, SeqNo](typename AHTraits::ResultType RetVal) -> Error {
return detail::respond<FuncReturn>(C, ResponseId, SeqNo,
std::move(RetVal));
};
return HTraits::unpackAndRunAsync(Handler, Responder, *Args);
};
}
ChannelT &C;
bool LazyAutoNegotiation;
RPCFunctionIdAllocator<FunctionIdT> FnIdAllocator;
FunctionIdT ResponseId;
std::map<std::string, FunctionIdT> LocalFunctionIds;
std::map<const char *, FunctionIdT> RemoteFunctionIds;
std::map<FunctionIdT, WrappedHandlerFn> Handlers;
std::mutex ResponsesMutex;
detail::SequenceNumberManager<SequenceNumberT> SequenceNumberMgr;
std::map<SequenceNumberT, std::unique_ptr<detail::ResponseHandler<ChannelT>>>
PendingResponses;
};
} // end namespace detail
template <typename ChannelT, typename FunctionIdT = uint32_t,
typename SequenceNumberT = uint32_t>
class MultiThreadedRPCEndpoint
: public detail::RPCEndpointBase<
MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
ChannelT, FunctionIdT, SequenceNumberT> {
private:
using BaseClass =
detail::RPCEndpointBase<
MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
ChannelT, FunctionIdT, SequenceNumberT>;
public:
MultiThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation)
: BaseClass(C, LazyAutoNegotiation) {}
/// Add a handler for the given RPC function.
/// This installs the given handler functor for the given RPC Function, and
/// makes the RPC function available for negotiation/calling from the remote.
template <typename Func, typename HandlerT>
void addHandler(HandlerT Handler) {
return this->template addHandlerImpl<Func>(std::move(Handler));
}
/// Add a class-method as a handler.
template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
addHandler<Func>(
detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
}
template <typename Func, typename HandlerT>
void addAsyncHandler(HandlerT Handler) {
return this->template addAsyncHandlerImpl<Func>(std::move(Handler));
}
/// Add a class-method as a handler.
template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
void addAsyncHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
addAsyncHandler<Func>(
detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
}
/// Return type for non-blocking call primitives.
template <typename Func>
using NonBlockingCallResult = typename detail::ResultTraits<
typename Func::ReturnType>::ReturnFutureType;
/// Call Func on Channel C. Does not block, does not call send. Returns a pair
/// of a future result and the sequence number assigned to the result.
///
/// This utility function is primarily used for single-threaded mode support,
/// where the sequence number can be used to wait for the corresponding
/// result. In multi-threaded mode the appendCallNB method, which does not
/// return the sequence numeber, should be preferred.
template <typename Func, typename... ArgTs>
Expected<NonBlockingCallResult<Func>> appendCallNB(const ArgTs &... Args) {
using RTraits = detail::ResultTraits<typename Func::ReturnType>;
using ErrorReturn = typename RTraits::ErrorReturnType;
using ErrorReturnPromise = typename RTraits::ReturnPromiseType;
// FIXME: Stack allocate and move this into the handler once LLVM builds
// with C++14.
auto Promise = std::make_shared<ErrorReturnPromise>();
auto FutureResult = Promise->get_future();
if (auto Err = this->template appendCallAsync<Func>(
[Promise](ErrorReturn RetOrErr) {
Promise->set_value(std::move(RetOrErr));
return Error::success();
},
Args...)) {
RTraits::consumeAbandoned(FutureResult.get());
return std::move(Err);
}
return std::move(FutureResult);
}
/// The same as appendCallNBWithSeq, except that it calls C.send() to
/// flush the channel after serializing the call.
template <typename Func, typename... ArgTs>
Expected<NonBlockingCallResult<Func>> callNB(const ArgTs &... Args) {
auto Result = appendCallNB<Func>(Args...);
if (!Result)
return Result;
if (auto Err = this->C.send()) {
this->abandonPendingResponses();
detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
std::move(Result->get()));
return std::move(Err);
}
return Result;
}
/// Call Func on Channel C. Blocks waiting for a result. Returns an Error
/// for void functions or an Expected<T> for functions returning a T.
///
/// This function is for use in threaded code where another thread is
/// handling responses and incoming calls.
template <typename Func, typename... ArgTs,
typename AltRetT = typename Func::ReturnType>
typename detail::ResultTraits<AltRetT>::ErrorReturnType
callB(const ArgTs &... Args) {
if (auto FutureResOrErr = callNB<Func>(Args...))
return FutureResOrErr->get();
else
return FutureResOrErr.takeError();
}
/// Handle incoming RPC calls.
Error handlerLoop() {
while (true)
if (auto Err = this->handleOne())
return Err;
return Error::success();
}
};
template <typename ChannelT, typename FunctionIdT = uint32_t,
typename SequenceNumberT = uint32_t>
class SingleThreadedRPCEndpoint
: public detail::RPCEndpointBase<
SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
ChannelT, FunctionIdT, SequenceNumberT> {
private:
using BaseClass =
detail::RPCEndpointBase<
SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>,
ChannelT, FunctionIdT, SequenceNumberT>;
public:
SingleThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation)
: BaseClass(C, LazyAutoNegotiation) {}
template <typename Func, typename HandlerT>
void addHandler(HandlerT Handler) {
return this->template addHandlerImpl<Func>(std::move(Handler));
}
template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
addHandler<Func>(
detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
}
template <typename Func, typename HandlerT>
void addAsyncHandler(HandlerT Handler) {
return this->template addAsyncHandlerImpl<Func>(std::move(Handler));
}
/// Add a class-method as a handler.
template <typename Func, typename ClassT, typename RetT, typename... ArgTs>
void addAsyncHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) {
addAsyncHandler<Func>(
detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method));
}
template <typename Func, typename... ArgTs,
typename AltRetT = typename Func::ReturnType>
typename detail::ResultTraits<AltRetT>::ErrorReturnType
callB(const ArgTs &... Args) {
bool ReceivedResponse = false;
using ResultType = typename detail::ResultTraits<AltRetT>::ErrorReturnType;
auto Result = detail::ResultTraits<AltRetT>::createBlankErrorReturnValue();
// We have to 'Check' result (which we know is in a success state at this
// point) so that it can be overwritten in the async handler.
(void)!!Result;
if (auto Err = this->template appendCallAsync<Func>(
[&](ResultType R) {
Result = std::move(R);
ReceivedResponse = true;
return Error::success();
},
Args...)) {
detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
std::move(Result));
return std::move(Err);
}
while (!ReceivedResponse) {
if (auto Err = this->handleOne()) {
detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned(
std::move(Result));
return std::move(Err);
}
}
return Result;
}
};
/// Asynchronous dispatch for a function on an RPC endpoint.
template <typename RPCClass, typename Func>
class RPCAsyncDispatch {
public:
RPCAsyncDispatch(RPCClass &Endpoint) : Endpoint(Endpoint) {}
template <typename HandlerT, typename... ArgTs>
Error operator()(HandlerT Handler, const ArgTs &... Args) const {
return Endpoint.template appendCallAsync<Func>(std::move(Handler), Args...);
}
private:
RPCClass &Endpoint;
};
/// Construct an asynchronous dispatcher from an RPC endpoint and a Func.
template <typename Func, typename RPCEndpointT>
RPCAsyncDispatch<RPCEndpointT, Func> rpcAsyncDispatch(RPCEndpointT &Endpoint) {
return RPCAsyncDispatch<RPCEndpointT, Func>(Endpoint);
}
/// Allows a set of asynchrounous calls to be dispatched, and then
/// waited on as a group.
class ParallelCallGroup {
public:
ParallelCallGroup() = default;
ParallelCallGroup(const ParallelCallGroup &) = delete;
ParallelCallGroup &operator=(const ParallelCallGroup &) = delete;
/// Make as asynchronous call.
template <typename AsyncDispatcher, typename HandlerT, typename... ArgTs>
Error call(const AsyncDispatcher &AsyncDispatch, HandlerT Handler,
const ArgTs &... Args) {
// Increment the count of outstanding calls. This has to happen before
// we invoke the call, as the handler may (depending on scheduling)
// be run immediately on another thread, and we don't want the decrement
// in the wrapped handler below to run before the increment.
{
std::unique_lock<std::mutex> Lock(M);
++NumOutstandingCalls;
}
// Wrap the user handler in a lambda that will decrement the
// outstanding calls count, then poke the condition variable.
using ArgType = typename detail::ResponseHandlerArg<
typename detail::HandlerTraits<HandlerT>::Type>::ArgType;
// FIXME: Move handler into wrapped handler once we have C++14.
auto WrappedHandler = [this, Handler](ArgType Arg) {
auto Err = Handler(std::move(Arg));
std::unique_lock<std::mutex> Lock(M);
--NumOutstandingCalls;
CV.notify_all();
return Err;
};
return AsyncDispatch(std::move(WrappedHandler), Args...);
}
/// Blocks until all calls have been completed and their return value
/// handlers run.
void wait() {
std::unique_lock<std::mutex> Lock(M);
while (NumOutstandingCalls > 0)
CV.wait(Lock);
}
private:
std::mutex M;
std::condition_variable CV;
uint32_t NumOutstandingCalls = 0;
};
/// Convenience class for grouping RPC Functions into APIs that can be
/// negotiated as a block.
///
template <typename... Funcs>
class APICalls {
public:
/// Test whether this API contains Function F.
template <typename F>
class Contains {
public:
static const bool value = false;
};
/// Negotiate all functions in this API.
template <typename RPCEndpoint>
static Error negotiate(RPCEndpoint &R) {
return Error::success();
}
};
template <typename Func, typename... Funcs>
class APICalls<Func, Funcs...> {
public:
template <typename F>
class Contains {
public:
static const bool value = std::is_same<F, Func>::value |
APICalls<Funcs...>::template Contains<F>::value;
};
template <typename RPCEndpoint>
static Error negotiate(RPCEndpoint &R) {
if (auto Err = R.template negotiateFunction<Func>())
return Err;
return APICalls<Funcs...>::negotiate(R);
}
};
template <typename... InnerFuncs, typename... Funcs>
class APICalls<APICalls<InnerFuncs...>, Funcs...> {
public:
template <typename F>
class Contains {
public:
static const bool value =
APICalls<InnerFuncs...>::template Contains<F>::value |
APICalls<Funcs...>::template Contains<F>::value;
};
template <typename RPCEndpoint>
static Error negotiate(RPCEndpoint &R) {
if (auto Err = APICalls<InnerFuncs...>::negotiate(R))
return Err;
return APICalls<Funcs...>::negotiate(R);
}
};
} // end namespace rpc
} // end namespace orc
} // end namespace llvm
#endif
|