1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
//===-- llvm/Operator.h - Operator utility subclass -------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various classes for working with Instructions and
// ConstantExprs.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_OPERATOR_H
#define LLVM_IR_OPERATOR_H
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cstddef>
namespace llvm {
/// This is a utility class that provides an abstraction for the common
/// functionality between Instructions and ConstantExprs.
class Operator : public User {
public:
// The Operator class is intended to be used as a utility, and is never itself
// instantiated.
Operator() = delete;
~Operator() = delete;
void *operator new(size_t s) = delete;
/// Return the opcode for this Instruction or ConstantExpr.
unsigned getOpcode() const {
if (const Instruction *I = dyn_cast<Instruction>(this))
return I->getOpcode();
return cast<ConstantExpr>(this)->getOpcode();
}
/// If V is an Instruction or ConstantExpr, return its opcode.
/// Otherwise return UserOp1.
static unsigned getOpcode(const Value *V) {
if (const Instruction *I = dyn_cast<Instruction>(V))
return I->getOpcode();
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
return CE->getOpcode();
return Instruction::UserOp1;
}
static bool classof(const Instruction *) { return true; }
static bool classof(const ConstantExpr *) { return true; }
static bool classof(const Value *V) {
return isa<Instruction>(V) || isa<ConstantExpr>(V);
}
};
/// Utility class for integer operators which may exhibit overflow - Add, Sub,
/// Mul, and Shl. It does not include SDiv, despite that operator having the
/// potential for overflow.
class OverflowingBinaryOperator : public Operator {
public:
enum {
NoUnsignedWrap = (1 << 0),
NoSignedWrap = (1 << 1)
};
private:
friend class Instruction;
friend class ConstantExpr;
void setHasNoUnsignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoUnsignedWrap) | (B * NoUnsignedWrap);
}
void setHasNoSignedWrap(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~NoSignedWrap) | (B * NoSignedWrap);
}
public:
/// Test whether this operation is known to never
/// undergo unsigned overflow, aka the nuw property.
bool hasNoUnsignedWrap() const {
return SubclassOptionalData & NoUnsignedWrap;
}
/// Test whether this operation is known to never
/// undergo signed overflow, aka the nsw property.
bool hasNoSignedWrap() const {
return (SubclassOptionalData & NoSignedWrap) != 0;
}
static bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Add ||
I->getOpcode() == Instruction::Sub ||
I->getOpcode() == Instruction::Mul ||
I->getOpcode() == Instruction::Shl;
}
static bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Instruction::Add ||
CE->getOpcode() == Instruction::Sub ||
CE->getOpcode() == Instruction::Mul ||
CE->getOpcode() == Instruction::Shl;
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// A udiv or sdiv instruction, which can be marked as "exact",
/// indicating that no bits are destroyed.
class PossiblyExactOperator : public Operator {
public:
enum {
IsExact = (1 << 0)
};
private:
friend class Instruction;
friend class ConstantExpr;
void setIsExact(bool B) {
SubclassOptionalData = (SubclassOptionalData & ~IsExact) | (B * IsExact);
}
public:
/// Test whether this division is known to be exact, with zero remainder.
bool isExact() const {
return SubclassOptionalData & IsExact;
}
static bool isPossiblyExactOpcode(unsigned OpC) {
return OpC == Instruction::SDiv ||
OpC == Instruction::UDiv ||
OpC == Instruction::AShr ||
OpC == Instruction::LShr;
}
static bool classof(const ConstantExpr *CE) {
return isPossiblyExactOpcode(CE->getOpcode());
}
static bool classof(const Instruction *I) {
return isPossiblyExactOpcode(I->getOpcode());
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// Convenience struct for specifying and reasoning about fast-math flags.
class FastMathFlags {
private:
friend class FPMathOperator;
unsigned Flags = 0;
FastMathFlags(unsigned F) {
// If all 7 bits are set, turn this into -1. If the number of bits grows,
// this must be updated. This is intended to provide some forward binary
// compatibility insurance for the meaning of 'fast' in case bits are added.
if (F == 0x7F) Flags = ~0U;
else Flags = F;
}
public:
// This is how the bits are used in Value::SubclassOptionalData so they
// should fit there too.
// WARNING: We're out of space. SubclassOptionalData only has 7 bits. New
// functionality will require a change in how this information is stored.
enum {
AllowReassoc = (1 << 0),
NoNaNs = (1 << 1),
NoInfs = (1 << 2),
NoSignedZeros = (1 << 3),
AllowReciprocal = (1 << 4),
AllowContract = (1 << 5),
ApproxFunc = (1 << 6)
};
FastMathFlags() = default;
bool any() const { return Flags != 0; }
bool none() const { return Flags == 0; }
bool all() const { return Flags == ~0U; }
void clear() { Flags = 0; }
void set() { Flags = ~0U; }
/// Flag queries
bool allowReassoc() const { return 0 != (Flags & AllowReassoc); }
bool noNaNs() const { return 0 != (Flags & NoNaNs); }
bool noInfs() const { return 0 != (Flags & NoInfs); }
bool noSignedZeros() const { return 0 != (Flags & NoSignedZeros); }
bool allowReciprocal() const { return 0 != (Flags & AllowReciprocal); }
bool allowContract() const { return 0 != (Flags & AllowContract); }
bool approxFunc() const { return 0 != (Flags & ApproxFunc); }
/// 'Fast' means all bits are set.
bool isFast() const { return all(); }
/// Flag setters
void setAllowReassoc(bool B = true) {
Flags = (Flags & ~AllowReassoc) | B * AllowReassoc;
}
void setNoNaNs(bool B = true) {
Flags = (Flags & ~NoNaNs) | B * NoNaNs;
}
void setNoInfs(bool B = true) {
Flags = (Flags & ~NoInfs) | B * NoInfs;
}
void setNoSignedZeros(bool B = true) {
Flags = (Flags & ~NoSignedZeros) | B * NoSignedZeros;
}
void setAllowReciprocal(bool B = true) {
Flags = (Flags & ~AllowReciprocal) | B * AllowReciprocal;
}
void setAllowContract(bool B = true) {
Flags = (Flags & ~AllowContract) | B * AllowContract;
}
void setApproxFunc(bool B = true) {
Flags = (Flags & ~ApproxFunc) | B * ApproxFunc;
}
void setFast(bool B = true) { B ? set() : clear(); }
void operator&=(const FastMathFlags &OtherFlags) {
Flags &= OtherFlags.Flags;
}
};
/// Utility class for floating point operations which can have
/// information about relaxed accuracy requirements attached to them.
class FPMathOperator : public Operator {
private:
friend class Instruction;
/// 'Fast' means all bits are set.
void setFast(bool B) {
setHasAllowReassoc(B);
setHasNoNaNs(B);
setHasNoInfs(B);
setHasNoSignedZeros(B);
setHasAllowReciprocal(B);
setHasAllowContract(B);
setHasApproxFunc(B);
}
void setHasAllowReassoc(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::AllowReassoc) |
(B * FastMathFlags::AllowReassoc);
}
void setHasNoNaNs(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::NoNaNs) |
(B * FastMathFlags::NoNaNs);
}
void setHasNoInfs(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::NoInfs) |
(B * FastMathFlags::NoInfs);
}
void setHasNoSignedZeros(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::NoSignedZeros) |
(B * FastMathFlags::NoSignedZeros);
}
void setHasAllowReciprocal(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::AllowReciprocal) |
(B * FastMathFlags::AllowReciprocal);
}
void setHasAllowContract(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::AllowContract) |
(B * FastMathFlags::AllowContract);
}
void setHasApproxFunc(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~FastMathFlags::ApproxFunc) |
(B * FastMathFlags::ApproxFunc);
}
/// Convenience function for setting multiple fast-math flags.
/// FMF is a mask of the bits to set.
void setFastMathFlags(FastMathFlags FMF) {
SubclassOptionalData |= FMF.Flags;
}
/// Convenience function for copying all fast-math flags.
/// All values in FMF are transferred to this operator.
void copyFastMathFlags(FastMathFlags FMF) {
SubclassOptionalData = FMF.Flags;
}
public:
/// Test if this operation allows all non-strict floating-point transforms.
bool isFast() const {
return ((SubclassOptionalData & FastMathFlags::AllowReassoc) != 0 &&
(SubclassOptionalData & FastMathFlags::NoNaNs) != 0 &&
(SubclassOptionalData & FastMathFlags::NoInfs) != 0 &&
(SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0 &&
(SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0 &&
(SubclassOptionalData & FastMathFlags::AllowContract) != 0 &&
(SubclassOptionalData & FastMathFlags::ApproxFunc) != 0);
}
/// Test if this operation may be simplified with reassociative transforms.
bool hasAllowReassoc() const {
return (SubclassOptionalData & FastMathFlags::AllowReassoc) != 0;
}
/// Test if this operation's arguments and results are assumed not-NaN.
bool hasNoNaNs() const {
return (SubclassOptionalData & FastMathFlags::NoNaNs) != 0;
}
/// Test if this operation's arguments and results are assumed not-infinite.
bool hasNoInfs() const {
return (SubclassOptionalData & FastMathFlags::NoInfs) != 0;
}
/// Test if this operation can ignore the sign of zero.
bool hasNoSignedZeros() const {
return (SubclassOptionalData & FastMathFlags::NoSignedZeros) != 0;
}
/// Test if this operation can use reciprocal multiply instead of division.
bool hasAllowReciprocal() const {
return (SubclassOptionalData & FastMathFlags::AllowReciprocal) != 0;
}
/// Test if this operation can be floating-point contracted (FMA).
bool hasAllowContract() const {
return (SubclassOptionalData & FastMathFlags::AllowContract) != 0;
}
/// Test if this operation allows approximations of math library functions or
/// intrinsics.
bool hasApproxFunc() const {
return (SubclassOptionalData & FastMathFlags::ApproxFunc) != 0;
}
/// Convenience function for getting all the fast-math flags
FastMathFlags getFastMathFlags() const {
return FastMathFlags(SubclassOptionalData);
}
/// Get the maximum error permitted by this operation in ULPs. An accuracy of
/// 0.0 means that the operation should be performed with the default
/// precision.
float getFPAccuracy() const;
static bool classof(const Instruction *I) {
return I->getType()->isFPOrFPVectorTy() ||
I->getOpcode() == Instruction::FCmp;
}
static bool classof(const ConstantExpr *CE) {
return CE->getType()->isFPOrFPVectorTy() ||
CE->getOpcode() == Instruction::FCmp;
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
/// A helper template for defining operators for individual opcodes.
template<typename SuperClass, unsigned Opc>
class ConcreteOperator : public SuperClass {
public:
static bool classof(const Instruction *I) {
return I->getOpcode() == Opc;
}
static bool classof(const ConstantExpr *CE) {
return CE->getOpcode() == Opc;
}
static bool classof(const Value *V) {
return (isa<Instruction>(V) && classof(cast<Instruction>(V))) ||
(isa<ConstantExpr>(V) && classof(cast<ConstantExpr>(V)));
}
};
class AddOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Add> {
};
class SubOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Sub> {
};
class MulOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Mul> {
};
class ShlOperator
: public ConcreteOperator<OverflowingBinaryOperator, Instruction::Shl> {
};
class SDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::SDiv> {
};
class UDivOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::UDiv> {
};
class AShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::AShr> {
};
class LShrOperator
: public ConcreteOperator<PossiblyExactOperator, Instruction::LShr> {
};
class ZExtOperator : public ConcreteOperator<Operator, Instruction::ZExt> {};
class GEPOperator
: public ConcreteOperator<Operator, Instruction::GetElementPtr> {
friend class GetElementPtrInst;
friend class ConstantExpr;
enum {
IsInBounds = (1 << 0),
// InRangeIndex: bits 1-6
};
void setIsInBounds(bool B) {
SubclassOptionalData =
(SubclassOptionalData & ~IsInBounds) | (B * IsInBounds);
}
public:
/// Test whether this is an inbounds GEP, as defined by LangRef.html.
bool isInBounds() const {
return SubclassOptionalData & IsInBounds;
}
/// Returns the offset of the index with an inrange attachment, or None if
/// none.
Optional<unsigned> getInRangeIndex() const {
if (SubclassOptionalData >> 1 == 0) return None;
return (SubclassOptionalData >> 1) - 1;
}
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
/// Method to return the pointer operand as a PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
Type *getSourceElementType() const;
Type *getResultElementType() const;
/// Method to return the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return getPointerOperandType()->getPointerAddressSpace();
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// Return true if all of the indices of this GEP are zeros.
/// If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (ConstantInt *C = dyn_cast<ConstantInt>(I))
if (C->isZero())
continue;
return false;
}
return true;
}
/// Return true if all of the indices of this GEP are constant integers.
/// If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const {
for (const_op_iterator I = idx_begin(), E = idx_end(); I != E; ++I) {
if (!isa<ConstantInt>(I))
return false;
}
return true;
}
unsigned countNonConstantIndices() const {
return count_if(make_range(idx_begin(), idx_end()), [](const Use& use) {
return !isa<ConstantInt>(*use);
});
}
/// Accumulate the constant address offset of this GEP if possible.
///
/// This routine accepts an APInt into which it will accumulate the constant
/// offset of this GEP if the GEP is in fact constant. If the GEP is not
/// all-constant, it returns false and the value of the offset APInt is
/// undefined (it is *not* preserved!). The APInt passed into this routine
/// must be at exactly as wide as the IntPtr type for the address space of the
/// base GEP pointer.
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
};
class PtrToIntOperator
: public ConcreteOperator<Operator, Instruction::PtrToInt> {
friend class PtrToInt;
friend class ConstantExpr;
public:
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
/// Method to return the pointer operand as a PointerType.
Type *getPointerOperandType() const {
return getPointerOperand()->getType();
}
/// Method to return the address space of the pointer operand.
unsigned getPointerAddressSpace() const {
return cast<PointerType>(getPointerOperandType())->getAddressSpace();
}
};
class BitCastOperator
: public ConcreteOperator<Operator, Instruction::BitCast> {
friend class BitCastInst;
friend class ConstantExpr;
public:
Type *getSrcTy() const {
return getOperand(0)->getType();
}
Type *getDestTy() const {
return getType();
}
};
} // end namespace llvm
#endif // LLVM_IR_OPERATOR_H
|