1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class. For more "Type"
// stuff, look in DerivedTypes.h.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_TYPE_H
#define LLVM_IR_TYPE_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <iterator>
namespace llvm {
template<class GraphType> struct GraphTraits;
class IntegerType;
class LLVMContext;
class PointerType;
class raw_ostream;
class StringRef;
/// The instances of the Type class are immutable: once they are created,
/// they are never changed. Also note that only one instance of a particular
/// type is ever created. Thus seeing if two types are equal is a matter of
/// doing a trivial pointer comparison. To enforce that no two equal instances
/// are created, Type instances can only be created via static factory methods
/// in class Type and in derived classes. Once allocated, Types are never
/// free'd.
///
class Type {
public:
//===--------------------------------------------------------------------===//
/// Definitions of all of the base types for the Type system. Based on this
/// value, you can cast to a class defined in DerivedTypes.h.
/// Note: If you add an element to this, you need to add an element to the
/// Type::getPrimitiveType function, or else things will break!
/// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
///
enum TypeID {
// PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
VoidTyID = 0, ///< 0: type with no size
HalfTyID, ///< 1: 16-bit floating point type
FloatTyID, ///< 2: 32-bit floating point type
DoubleTyID, ///< 3: 64-bit floating point type
X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
LabelTyID, ///< 7: Labels
MetadataTyID, ///< 8: Metadata
X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
TokenTyID, ///< 10: Tokens
// Derived types... see DerivedTypes.h file.
// Make sure FirstDerivedTyID stays up to date!
IntegerTyID, ///< 11: Arbitrary bit width integers
FunctionTyID, ///< 12: Functions
StructTyID, ///< 13: Structures
ArrayTyID, ///< 14: Arrays
PointerTyID, ///< 15: Pointers
VectorTyID ///< 16: SIMD 'packed' format, or other vector type
};
private:
/// This refers to the LLVMContext in which this type was uniqued.
LLVMContext &Context;
TypeID ID : 8; // The current base type of this type.
unsigned SubclassData : 24; // Space for subclasses to store data.
// Note that this should be synchronized with
// MAX_INT_BITS value in IntegerType class.
protected:
friend class LLVMContextImpl;
explicit Type(LLVMContext &C, TypeID tid)
: Context(C), ID(tid), SubclassData(0) {}
~Type() = default;
unsigned getSubclassData() const { return SubclassData; }
void setSubclassData(unsigned val) {
SubclassData = val;
// Ensure we don't have any accidental truncation.
assert(getSubclassData() == val && "Subclass data too large for field");
}
/// Keeps track of how many Type*'s there are in the ContainedTys list.
unsigned NumContainedTys = 0;
/// A pointer to the array of Types contained by this Type. For example, this
/// includes the arguments of a function type, the elements of a structure,
/// the pointee of a pointer, the element type of an array, etc. This pointer
/// may be 0 for types that don't contain other types (Integer, Double,
/// Float).
Type * const *ContainedTys = nullptr;
static bool isSequentialType(TypeID TyID) {
return TyID == ArrayTyID || TyID == VectorTyID;
}
public:
/// Print the current type.
/// Omit the type details if \p NoDetails == true.
/// E.g., let %st = type { i32, i16 }
/// When \p NoDetails is true, we only print %st.
/// Put differently, \p NoDetails prints the type as if
/// inlined with the operands when printing an instruction.
void print(raw_ostream &O, bool IsForDebug = false,
bool NoDetails = false) const;
void dump() const;
/// Return the LLVMContext in which this type was uniqued.
LLVMContext &getContext() const { return Context; }
//===--------------------------------------------------------------------===//
// Accessors for working with types.
//
/// Return the type id for the type. This will return one of the TypeID enum
/// elements defined above.
TypeID getTypeID() const { return ID; }
/// Return true if this is 'void'.
bool isVoidTy() const { return getTypeID() == VoidTyID; }
/// Return true if this is 'half', a 16-bit IEEE fp type.
bool isHalfTy() const { return getTypeID() == HalfTyID; }
/// Return true if this is 'float', a 32-bit IEEE fp type.
bool isFloatTy() const { return getTypeID() == FloatTyID; }
/// Return true if this is 'double', a 64-bit IEEE fp type.
bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
/// Return true if this is x86 long double.
bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
/// Return true if this is 'fp128'.
bool isFP128Ty() const { return getTypeID() == FP128TyID; }
/// Return true if this is powerpc long double.
bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
/// Return true if this is one of the six floating-point types
bool isFloatingPointTy() const {
return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
getTypeID() == DoubleTyID ||
getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
getTypeID() == PPC_FP128TyID;
}
const fltSemantics &getFltSemantics() const {
switch (getTypeID()) {
case HalfTyID: return APFloat::IEEEhalf();
case FloatTyID: return APFloat::IEEEsingle();
case DoubleTyID: return APFloat::IEEEdouble();
case X86_FP80TyID: return APFloat::x87DoubleExtended();
case FP128TyID: return APFloat::IEEEquad();
case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
default: llvm_unreachable("Invalid floating type");
}
}
/// Return true if this is X86 MMX.
bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
/// Return true if this is a FP type or a vector of FP.
bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
/// Return true if this is 'label'.
bool isLabelTy() const { return getTypeID() == LabelTyID; }
/// Return true if this is 'metadata'.
bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
/// Return true if this is 'token'.
bool isTokenTy() const { return getTypeID() == TokenTyID; }
/// True if this is an instance of IntegerType.
bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
/// Return true if this is an IntegerType of the given width.
bool isIntegerTy(unsigned Bitwidth) const;
/// Return true if this is an integer type or a vector of integer types.
bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
/// Return true if this is an integer type or a vector of integer types of
/// the given width.
bool isIntOrIntVectorTy(unsigned BitWidth) const {
return getScalarType()->isIntegerTy(BitWidth);
}
/// Return true if this is an integer type or a pointer type.
bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
/// True if this is an instance of FunctionType.
bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
/// True if this is an instance of StructType.
bool isStructTy() const { return getTypeID() == StructTyID; }
/// True if this is an instance of ArrayType.
bool isArrayTy() const { return getTypeID() == ArrayTyID; }
/// True if this is an instance of PointerType.
bool isPointerTy() const { return getTypeID() == PointerTyID; }
/// Return true if this is a pointer type or a vector of pointer types.
bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
/// True if this is an instance of VectorType.
bool isVectorTy() const { return getTypeID() == VectorTyID; }
/// Return true if this type could be converted with a lossless BitCast to
/// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
/// same size only where no re-interpretation of the bits is done.
/// Determine if this type could be losslessly bitcast to Ty
bool canLosslesslyBitCastTo(Type *Ty) const;
/// Return true if this type is empty, that is, it has no elements or all of
/// its elements are empty.
bool isEmptyTy() const;
/// Return true if the type is "first class", meaning it is a valid type for a
/// Value.
bool isFirstClassType() const {
return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
}
/// Return true if the type is a valid type for a register in codegen. This
/// includes all first-class types except struct and array types.
bool isSingleValueType() const {
return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
isPointerTy() || isVectorTy();
}
/// Return true if the type is an aggregate type. This means it is valid as
/// the first operand of an insertvalue or extractvalue instruction. This
/// includes struct and array types, but does not include vector types.
bool isAggregateType() const {
return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
}
/// Return true if it makes sense to take the size of this type. To get the
/// actual size for a particular target, it is reasonable to use the
/// DataLayout subsystem to do this.
bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
// If it's a primitive, it is always sized.
if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
getTypeID() == PointerTyID ||
getTypeID() == X86_MMXTyID)
return true;
// If it is not something that can have a size (e.g. a function or label),
// it doesn't have a size.
if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
getTypeID() != VectorTyID)
return false;
// Otherwise we have to try harder to decide.
return isSizedDerivedType(Visited);
}
/// Return the basic size of this type if it is a primitive type. These are
/// fixed by LLVM and are not target-dependent.
/// This will return zero if the type does not have a size or is not a
/// primitive type.
///
/// Note that this may not reflect the size of memory allocated for an
/// instance of the type or the number of bytes that are written when an
/// instance of the type is stored to memory. The DataLayout class provides
/// additional query functions to provide this information.
///
unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
/// If this is a vector type, return the getPrimitiveSizeInBits value for the
/// element type. Otherwise return the getPrimitiveSizeInBits value for this
/// type.
unsigned getScalarSizeInBits() const LLVM_READONLY;
/// Return the width of the mantissa of this type. This is only valid on
/// floating-point types. If the FP type does not have a stable mantissa (e.g.
/// ppc long double), this method returns -1.
int getFPMantissaWidth() const;
/// If this is a vector type, return the element type, otherwise return
/// 'this'.
Type *getScalarType() const {
if (isVectorTy())
return getVectorElementType();
return const_cast<Type*>(this);
}
//===--------------------------------------------------------------------===//
// Type Iteration support.
//
using subtype_iterator = Type * const *;
subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
ArrayRef<Type*> subtypes() const {
return makeArrayRef(subtype_begin(), subtype_end());
}
using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
subtype_reverse_iterator subtype_rbegin() const {
return subtype_reverse_iterator(subtype_end());
}
subtype_reverse_iterator subtype_rend() const {
return subtype_reverse_iterator(subtype_begin());
}
/// This method is used to implement the type iterator (defined at the end of
/// the file). For derived types, this returns the types 'contained' in the
/// derived type.
Type *getContainedType(unsigned i) const {
assert(i < NumContainedTys && "Index out of range!");
return ContainedTys[i];
}
/// Return the number of types in the derived type.
unsigned getNumContainedTypes() const { return NumContainedTys; }
//===--------------------------------------------------------------------===//
// Helper methods corresponding to subclass methods. This forces a cast to
// the specified subclass and calls its accessor. "getVectorNumElements" (for
// example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
// only intended to cover the core methods that are frequently used, helper
// methods should not be added here.
inline unsigned getIntegerBitWidth() const;
inline Type *getFunctionParamType(unsigned i) const;
inline unsigned getFunctionNumParams() const;
inline bool isFunctionVarArg() const;
inline StringRef getStructName() const;
inline unsigned getStructNumElements() const;
inline Type *getStructElementType(unsigned N) const;
inline Type *getSequentialElementType() const {
assert(isSequentialType(getTypeID()) && "Not a sequential type!");
return ContainedTys[0];
}
inline uint64_t getArrayNumElements() const;
Type *getArrayElementType() const {
assert(getTypeID() == ArrayTyID);
return ContainedTys[0];
}
inline unsigned getVectorNumElements() const;
Type *getVectorElementType() const {
assert(getTypeID() == VectorTyID);
return ContainedTys[0];
}
Type *getPointerElementType() const {
assert(getTypeID() == PointerTyID);
return ContainedTys[0];
}
/// Get the address space of this pointer or pointer vector type.
inline unsigned getPointerAddressSpace() const;
//===--------------------------------------------------------------------===//
// Static members exported by the Type class itself. Useful for getting
// instances of Type.
//
/// Return a type based on an identifier.
static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
//===--------------------------------------------------------------------===//
// These are the builtin types that are always available.
//
static Type *getVoidTy(LLVMContext &C);
static Type *getLabelTy(LLVMContext &C);
static Type *getHalfTy(LLVMContext &C);
static Type *getFloatTy(LLVMContext &C);
static Type *getDoubleTy(LLVMContext &C);
static Type *getMetadataTy(LLVMContext &C);
static Type *getX86_FP80Ty(LLVMContext &C);
static Type *getFP128Ty(LLVMContext &C);
static Type *getPPC_FP128Ty(LLVMContext &C);
static Type *getX86_MMXTy(LLVMContext &C);
static Type *getTokenTy(LLVMContext &C);
static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
static IntegerType *getInt1Ty(LLVMContext &C);
static IntegerType *getInt8Ty(LLVMContext &C);
static IntegerType *getInt16Ty(LLVMContext &C);
static IntegerType *getInt32Ty(LLVMContext &C);
static IntegerType *getInt64Ty(LLVMContext &C);
static IntegerType *getInt128Ty(LLVMContext &C);
template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
if (std::is_integral<ScalarTy>::value) {
return (Type*) Type::getIntNTy(C, noOfBits);
} else if (std::is_floating_point<ScalarTy>::value) {
switch (noOfBits) {
case 32:
return Type::getFloatTy(C);
case 64:
return Type::getDoubleTy(C);
}
}
llvm_unreachable("Unsupported type in Type::getScalarTy");
}
//===--------------------------------------------------------------------===//
// Convenience methods for getting pointer types with one of the above builtin
// types as pointee.
//
static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
/// Return a pointer to the current type. This is equivalent to
/// PointerType::get(Foo, AddrSpace).
PointerType *getPointerTo(unsigned AddrSpace = 0) const;
private:
/// Derived types like structures and arrays are sized iff all of the members
/// of the type are sized as well. Since asking for their size is relatively
/// uncommon, move this operation out-of-line.
bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
};
// Printing of types.
inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
// allow isa<PointerType>(x) to work without DerivedTypes.h included.
template <> struct isa_impl<PointerType, Type> {
static inline bool doit(const Type &Ty) {
return Ty.getTypeID() == Type::PointerTyID;
}
};
//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types.
template <> struct GraphTraits<Type *> {
using NodeRef = Type *;
using ChildIteratorType = Type::subtype_iterator;
static NodeRef getEntryNode(Type *T) { return T; }
static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
};
template <> struct GraphTraits<const Type*> {
using NodeRef = const Type *;
using ChildIteratorType = Type::subtype_iterator;
static NodeRef getEntryNode(NodeRef T) { return T; }
static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
};
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
/* Specialized opaque type conversions.
*/
inline Type **unwrap(LLVMTypeRef* Tys) {
return reinterpret_cast<Type**>(Tys);
}
inline LLVMTypeRef *wrap(Type **Tys) {
return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
}
} // end namespace llvm
#endif // LLVM_IR_TYPE_H
|