1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
|
//===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_ELFTYPES_H
#define LLVM_OBJECT_ELFTYPES_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <type_traits>
namespace llvm {
namespace object {
using support::endianness;
template <class ELFT> struct Elf_Ehdr_Impl;
template <class ELFT> struct Elf_Shdr_Impl;
template <class ELFT> struct Elf_Sym_Impl;
template <class ELFT> struct Elf_Dyn_Impl;
template <class ELFT> struct Elf_Phdr_Impl;
template <class ELFT, bool isRela> struct Elf_Rel_Impl;
template <class ELFT> struct Elf_Verdef_Impl;
template <class ELFT> struct Elf_Verdaux_Impl;
template <class ELFT> struct Elf_Verneed_Impl;
template <class ELFT> struct Elf_Vernaux_Impl;
template <class ELFT> struct Elf_Versym_Impl;
template <class ELFT> struct Elf_Hash_Impl;
template <class ELFT> struct Elf_GnuHash_Impl;
template <class ELFT> struct Elf_Chdr_Impl;
template <class ELFT> struct Elf_Nhdr_Impl;
template <class ELFT> class Elf_Note_Impl;
template <class ELFT> class Elf_Note_Iterator_Impl;
template <class ELFT> struct Elf_CGProfile_Impl;
template <endianness E, bool Is64> struct ELFType {
private:
template <typename Ty>
using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
public:
static const endianness TargetEndianness = E;
static const bool Is64Bits = Is64;
using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type;
using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
using Relr = packed<uint>;
using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
using Note = Elf_Note_Impl<ELFType<E, Is64>>;
using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
using DynRange = ArrayRef<Dyn>;
using ShdrRange = ArrayRef<Shdr>;
using SymRange = ArrayRef<Sym>;
using RelRange = ArrayRef<Rel>;
using RelaRange = ArrayRef<Rela>;
using RelrRange = ArrayRef<Relr>;
using PhdrRange = ArrayRef<Phdr>;
using Half = packed<uint16_t>;
using Word = packed<uint32_t>;
using Sword = packed<int32_t>;
using Xword = packed<uint64_t>;
using Sxword = packed<int64_t>;
using Addr = packed<uint>;
using Off = packed<uint>;
};
using ELF32LE = ELFType<support::little, false>;
using ELF32BE = ELFType<support::big, false>;
using ELF64LE = ELFType<support::little, true>;
using ELF64BE = ELFType<support::big, true>;
// Use an alignment of 2 for the typedefs since that is the worst case for
// ELF files in archives.
// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \
using Elf_Addr = typename ELFT::Addr; \
using Elf_Off = typename ELFT::Off; \
using Elf_Half = typename ELFT::Half; \
using Elf_Word = typename ELFT::Word; \
using Elf_Sword = typename ELFT::Sword; \
using Elf_Xword = typename ELFT::Xword; \
using Elf_Sxword = typename ELFT::Sxword;
#define LLVM_ELF_COMMA ,
#define LLVM_ELF_IMPORT_TYPES(E, W) \
LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
// Section header.
template <class ELFT> struct Elf_Shdr_Base;
template <endianness TargetEndianness>
struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Word sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Word sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Word sh_addralign; // Section address alignment
Elf_Word sh_entsize; // Size of records contained within the section
};
template <endianness TargetEndianness>
struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Xword sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Xword sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Xword sh_addralign; // Section address alignment
Elf_Xword sh_entsize; // Size of records contained within the section
};
template <class ELFT>
struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
using Elf_Shdr_Base<ELFT>::sh_entsize;
using Elf_Shdr_Base<ELFT>::sh_size;
/// Get the number of entities this section contains if it has any.
unsigned getEntityCount() const {
if (sh_entsize == 0)
return 0;
return sh_size / sh_entsize;
}
};
template <class ELFT> struct Elf_Sym_Base;
template <endianness TargetEndianness>
struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word st_name; // Symbol name (index into string table)
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
};
template <endianness TargetEndianness>
struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Xword st_size; // Size of the symbol
};
template <class ELFT>
struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
using Elf_Sym_Base<ELFT>::st_info;
using Elf_Sym_Base<ELFT>::st_shndx;
using Elf_Sym_Base<ELFT>::st_other;
using Elf_Sym_Base<ELFT>::st_value;
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
uint64_t getValue() const { return st_value; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
/// Access to the STV_xxx flag stored in the first two bits of st_other.
/// STV_DEFAULT: 0
/// STV_INTERNAL: 1
/// STV_HIDDEN: 2
/// STV_PROTECTED: 3
unsigned char getVisibility() const { return st_other & 0x3; }
void setVisibility(unsigned char v) {
assert(v < 4 && "Invalid value for visibility");
st_other = (st_other & ~0x3) | v;
}
bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
bool isCommon() const {
return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
}
bool isDefined() const { return !isUndefined(); }
bool isProcessorSpecific() const {
return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
}
bool isOSSpecific() const {
return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
}
bool isReserved() const {
// ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
// true and some compilers warn about it.
return st_shndx >= ELF::SHN_LORESERVE;
}
bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
bool isExternal() const {
return getBinding() != ELF::STB_LOCAL;
}
Expected<StringRef> getName(StringRef StrTab) const;
};
template <class ELFT>
Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
uint32_t Offset = this->st_name;
if (Offset >= StrTab.size())
return errorCodeToError(object_error::parse_failed);
return StringRef(StrTab.data() + Offset);
}
/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
/// (.gnu.version). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Versym_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
};
/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdef_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
using Elf_Verdaux = Elf_Verdaux_Impl<ELFT>;
Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
Elf_Half vd_flags; // Bitwise flags (VER_DEF_*)
Elf_Half vd_ndx; // Version index, used in .gnu.version entries
Elf_Half vd_cnt; // Number of Verdaux entries
Elf_Word vd_hash; // Hash of name
Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes)
Elf_Word vd_next; // Offset to the next Verdef entry (in bytes)
/// Get the first Verdaux entry for this Verdef.
const Elf_Verdaux *getAux() const {
return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
}
};
/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdaux_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word vda_name; // Version name (offset in string table)
Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
};
/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verneed_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
Elf_Half vn_cnt; // Number of associated Vernaux entries
Elf_Word vn_file; // Library name (string table offset)
Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes)
Elf_Word vn_next; // Offset to next Verneed entry (in bytes)
};
/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Vernaux_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word vna_hash; // Hash of dependency name
Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
Elf_Half vna_other; // Version index, used in .gnu.version entries
Elf_Word vna_name; // Dependency name
Elf_Word vna_next; // Offset to next Vernaux entry (in bytes)
};
/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
/// table section (.dynamic) look like.
template <class ELFT> struct Elf_Dyn_Base;
template <endianness TargetEndianness>
struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Sword d_tag;
union {
Elf_Word d_val;
Elf_Addr d_ptr;
} d_un;
};
template <endianness TargetEndianness>
struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Sxword d_tag;
union {
Elf_Xword d_val;
Elf_Addr d_ptr;
} d_un;
};
/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
template <class ELFT>
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
using Elf_Dyn_Base<ELFT>::d_tag;
using Elf_Dyn_Base<ELFT>::d_un;
using intX_t = typename std::conditional<ELFT::Is64Bits,
int64_t, int32_t>::type;
using uintX_t = typename std::conditional<ELFT::Is64Bits,
uint64_t, uint32_t>::type;
intX_t getTag() const { return d_tag; }
uintX_t getVal() const { return d_un.d_val; }
uintX_t getPtr() const { return d_un.d_ptr; }
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
static const bool IsRela = false;
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
uint32_t getRInfo(bool isMips64EL) const {
assert(!isMips64EL);
return r_info;
}
void setRInfo(uint32_t R, bool IsMips64EL) {
assert(!IsMips64EL);
r_info = R;
}
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
uint32_t getSymbol(bool isMips64EL) const {
return this->getRInfo(isMips64EL) >> 8;
}
unsigned char getType(bool isMips64EL) const {
return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
}
void setSymbol(uint32_t s, bool IsMips64EL) {
setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
}
void setType(unsigned char t, bool IsMips64EL) {
setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
}
void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
this->setRInfo((s << 8) + t, IsMips64EL);
}
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
: public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
static const bool IsRela = true;
Elf_Sword r_addend; // Compute value for relocatable field by adding this
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
static const bool IsRela = false;
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
uint64_t getRInfo(bool isMips64EL) const {
uint64_t t = r_info;
if (!isMips64EL)
return t;
// Mips64 little endian has a "special" encoding of r_info. Instead of one
// 64 bit little endian number, it is a little endian 32 bit number followed
// by a 32 bit big endian number.
return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
}
void setRInfo(uint64_t R, bool IsMips64EL) {
if (IsMips64EL)
r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
else
r_info = R;
}
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
uint32_t getSymbol(bool isMips64EL) const {
return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
}
uint32_t getType(bool isMips64EL) const {
return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
}
void setSymbol(uint32_t s, bool IsMips64EL) {
setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
}
void setType(uint32_t t, bool IsMips64EL) {
setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
}
void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
}
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
: public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
static const bool IsRela = true;
Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
};
template <class ELFT>
struct Elf_Ehdr_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
Elf_Half e_type; // Type of file (see ET_*)
Elf_Half e_machine; // Required architecture for this file (see EM_*)
Elf_Word e_version; // Must be equal to 1
Elf_Addr e_entry; // Address to jump to in order to start program
Elf_Off e_phoff; // Program header table's file offset, in bytes
Elf_Off e_shoff; // Section header table's file offset, in bytes
Elf_Word e_flags; // Processor-specific flags
Elf_Half e_ehsize; // Size of ELF header, in bytes
Elf_Half e_phentsize; // Size of an entry in the program header table
Elf_Half e_phnum; // Number of entries in the program header table
Elf_Half e_shentsize; // Size of an entry in the section header table
Elf_Half e_shnum; // Number of entries in the section header table
Elf_Half e_shstrndx; // Section header table index of section name
// string table
bool checkMagic() const {
return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};
template <endianness TargetEndianness>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word p_type; // Type of segment
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Word p_flags; // Segment flags
Elf_Word p_align; // Segment alignment constraint
};
template <endianness TargetEndianness>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word p_type; // Type of segment
Elf_Word p_flags; // Segment flags
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Xword p_align; // Segment alignment constraint
};
// ELFT needed for endianness.
template <class ELFT>
struct Elf_Hash_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word nbucket;
Elf_Word nchain;
ArrayRef<Elf_Word> buckets() const {
return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
}
ArrayRef<Elf_Word> chains() const {
return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
&nbucket + 2 + nbucket + nchain);
}
};
// .gnu.hash section
template <class ELFT>
struct Elf_GnuHash_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word nbuckets;
Elf_Word symndx;
Elf_Word maskwords;
Elf_Word shift2;
ArrayRef<Elf_Off> filter() const {
return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
maskwords);
}
ArrayRef<Elf_Word> buckets() const {
return ArrayRef<Elf_Word>(
reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
}
ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
}
};
// Compressed section headers.
// http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
template <endianness TargetEndianness>
struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word ch_type;
Elf_Word ch_size;
Elf_Word ch_addralign;
};
template <endianness TargetEndianness>
struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word ch_type;
Elf_Word ch_reserved;
Elf_Xword ch_size;
Elf_Xword ch_addralign;
};
/// Note header
template <class ELFT>
struct Elf_Nhdr_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word n_namesz;
Elf_Word n_descsz;
Elf_Word n_type;
/// The alignment of the name and descriptor.
///
/// Implementations differ from the specification here: in practice all
/// variants align both the name and descriptor to 4-bytes.
static const unsigned int Align = 4;
/// Get the size of the note, including name, descriptor, and padding.
size_t getSize() const {
return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
}
};
/// An ELF note.
///
/// Wraps a note header, providing methods for accessing the name and
/// descriptor safely.
template <class ELFT>
class Elf_Note_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
const Elf_Nhdr_Impl<ELFT> &Nhdr;
template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
public:
/// Get the note's name, excluding the terminating null byte.
StringRef getName() const {
if (!Nhdr.n_namesz)
return StringRef();
return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
Nhdr.n_namesz - 1);
}
/// Get the note's descriptor.
ArrayRef<Elf_Word> getDesc() const {
if (!Nhdr.n_descsz)
return ArrayRef<Elf_Word>();
return ArrayRef<Elf_Word>(
reinterpret_cast<const Elf_Word *>(
reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz)),
Nhdr.n_descsz);
}
/// Get the note's type.
Elf_Word getType() const { return Nhdr.n_type; }
};
template <class ELFT>
class Elf_Note_Iterator_Impl
: std::iterator<std::forward_iterator_tag, Elf_Note_Impl<ELFT>> {
// Nhdr being a nullptr marks the end of iteration.
const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
size_t RemainingSize = 0u;
Error *Err = nullptr;
template <class ELFFileELFT> friend class ELFFile;
// Stop iteration and indicate an overflow.
void stopWithOverflowError() {
Nhdr = nullptr;
*Err = make_error<StringError>("ELF note overflows container",
object_error::parse_failed);
}
// Advance Nhdr by NoteSize bytes, starting from NhdrPos.
//
// Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
// upon returning. Handles stopping iteration when reaching the end of the
// container, either cleanly or with an overflow error.
void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
RemainingSize -= NoteSize;
if (RemainingSize == 0u)
Nhdr = nullptr;
else if (sizeof(*Nhdr) > RemainingSize)
stopWithOverflowError();
else {
Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
if (Nhdr->getSize() > RemainingSize)
stopWithOverflowError();
}
}
Elf_Note_Iterator_Impl() {}
explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
: RemainingSize(Size), Err(&Err) {
assert(Start && "ELF note iterator starting at NULL");
advanceNhdr(Start, 0u);
}
public:
Elf_Note_Iterator_Impl &operator++() {
assert(Nhdr && "incremented ELF note end iterator");
const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
size_t NoteSize = Nhdr->getSize();
advanceNhdr(NhdrPos, NoteSize);
return *this;
}
bool operator==(Elf_Note_Iterator_Impl Other) const {
return Nhdr == Other.Nhdr;
}
bool operator!=(Elf_Note_Iterator_Impl Other) const {
return !(*this == Other);
}
Elf_Note_Impl<ELFT> operator*() const {
assert(Nhdr && "dereferenced ELF note end iterator");
return Elf_Note_Impl<ELFT>(*Nhdr);
}
};
template <class ELFT> struct Elf_CGProfile_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word cgp_from;
Elf_Word cgp_to;
Elf_Xword cgp_weight;
};
// MIPS .reginfo section
template <class ELFT>
struct Elf_Mips_RegInfo;
template <support::endianness TargetEndianness>
struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word ri_gprmask; // bit-mask of used general registers
Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers
Elf_Addr ri_gp_value; // gp register value
};
template <support::endianness TargetEndianness>
struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word ri_gprmask; // bit-mask of used general registers
Elf_Word ri_pad; // unused padding field
Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers
Elf_Addr ri_gp_value; // gp register value
};
// .MIPS.options section
template <class ELFT> struct Elf_Mips_Options {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
uint8_t kind; // Determines interpretation of variable part of descriptor
uint8_t size; // Byte size of descriptor, including this header
Elf_Half section; // Section header index of section affected,
// or 0 for global options
Elf_Word info; // Kind-specific information
Elf_Mips_RegInfo<ELFT> &getRegInfo() {
assert(kind == ELF::ODK_REGINFO);
return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
(uint8_t *)this + sizeof(Elf_Mips_Options));
}
const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
}
};
// .MIPS.abiflags section content
template <class ELFT> struct Elf_Mips_ABIFlags {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half version; // Version of the structure
uint8_t isa_level; // ISA level: 1-5, 32, and 64
uint8_t isa_rev; // ISA revision (0 for MIPS I - MIPS V)
uint8_t gpr_size; // General purpose registers size
uint8_t cpr1_size; // Co-processor 1 registers size
uint8_t cpr2_size; // Co-processor 2 registers size
uint8_t fp_abi; // Floating-point ABI flag
Elf_Word isa_ext; // Processor-specific extension
Elf_Word ases; // ASEs flags
Elf_Word flags1; // General flags
Elf_Word flags2; // General flags
};
} // end namespace object.
} // end namespace llvm.
#endif // LLVM_OBJECT_ELFTYPES_H
|