1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
//===- BranchProbability.h - Branch Probability Wrapper ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Definition of BranchProbability shared by IR and Machine Instructions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_BRANCHPROBABILITY_H
#define LLVM_SUPPORT_BRANCHPROBABILITY_H
#include "llvm/Support/DataTypes.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <numeric>
namespace llvm {
class raw_ostream;
// This class represents Branch Probability as a non-negative fraction that is
// no greater than 1. It uses a fixed-point-like implementation, in which the
// denominator is always a constant value (here we use 1<<31 for maximum
// precision).
class BranchProbability {
// Numerator
uint32_t N;
// Denominator, which is a constant value.
static const uint32_t D = 1u << 31;
static const uint32_t UnknownN = UINT32_MAX;
// Construct a BranchProbability with only numerator assuming the denominator
// is 1<<31. For internal use only.
explicit BranchProbability(uint32_t n) : N(n) {}
public:
BranchProbability() : N(UnknownN) {}
BranchProbability(uint32_t Numerator, uint32_t Denominator);
bool isZero() const { return N == 0; }
bool isUnknown() const { return N == UnknownN; }
static BranchProbability getZero() { return BranchProbability(0); }
static BranchProbability getOne() { return BranchProbability(D); }
static BranchProbability getUnknown() { return BranchProbability(UnknownN); }
// Create a BranchProbability object with the given numerator and 1<<31
// as denominator.
static BranchProbability getRaw(uint32_t N) { return BranchProbability(N); }
// Create a BranchProbability object from 64-bit integers.
static BranchProbability getBranchProbability(uint64_t Numerator,
uint64_t Denominator);
// Normalize given probabilties so that the sum of them becomes approximate
// one.
template <class ProbabilityIter>
static void normalizeProbabilities(ProbabilityIter Begin,
ProbabilityIter End);
uint32_t getNumerator() const { return N; }
static uint32_t getDenominator() { return D; }
// Return (1 - Probability).
BranchProbability getCompl() const { return BranchProbability(D - N); }
raw_ostream &print(raw_ostream &OS) const;
void dump() const;
/// Scale a large integer.
///
/// Scales \c Num. Guarantees full precision. Returns the floor of the
/// result.
///
/// \return \c Num times \c this.
uint64_t scale(uint64_t Num) const;
/// Scale a large integer by the inverse.
///
/// Scales \c Num by the inverse of \c this. Guarantees full precision.
/// Returns the floor of the result.
///
/// \return \c Num divided by \c this.
uint64_t scaleByInverse(uint64_t Num) const;
BranchProbability &operator+=(BranchProbability RHS) {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in arithmetics.");
// Saturate the result in case of overflow.
N = (uint64_t(N) + RHS.N > D) ? D : N + RHS.N;
return *this;
}
BranchProbability &operator-=(BranchProbability RHS) {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in arithmetics.");
// Saturate the result in case of underflow.
N = N < RHS.N ? 0 : N - RHS.N;
return *this;
}
BranchProbability &operator*=(BranchProbability RHS) {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in arithmetics.");
N = (static_cast<uint64_t>(N) * RHS.N + D / 2) / D;
return *this;
}
BranchProbability &operator*=(uint32_t RHS) {
assert(N != UnknownN &&
"Unknown probability cannot participate in arithmetics.");
N = (uint64_t(N) * RHS > D) ? D : N * RHS;
return *this;
}
BranchProbability &operator/=(uint32_t RHS) {
assert(N != UnknownN &&
"Unknown probability cannot participate in arithmetics.");
assert(RHS > 0 && "The divider cannot be zero.");
N /= RHS;
return *this;
}
BranchProbability operator+(BranchProbability RHS) const {
BranchProbability Prob(*this);
return Prob += RHS;
}
BranchProbability operator-(BranchProbability RHS) const {
BranchProbability Prob(*this);
return Prob -= RHS;
}
BranchProbability operator*(BranchProbability RHS) const {
BranchProbability Prob(*this);
return Prob *= RHS;
}
BranchProbability operator*(uint32_t RHS) const {
BranchProbability Prob(*this);
return Prob *= RHS;
}
BranchProbability operator/(uint32_t RHS) const {
BranchProbability Prob(*this);
return Prob /= RHS;
}
bool operator==(BranchProbability RHS) const { return N == RHS.N; }
bool operator!=(BranchProbability RHS) const { return !(*this == RHS); }
bool operator<(BranchProbability RHS) const {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in comparisons.");
return N < RHS.N;
}
bool operator>(BranchProbability RHS) const {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in comparisons.");
return RHS < *this;
}
bool operator<=(BranchProbability RHS) const {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in comparisons.");
return !(RHS < *this);
}
bool operator>=(BranchProbability RHS) const {
assert(N != UnknownN && RHS.N != UnknownN &&
"Unknown probability cannot participate in comparisons.");
return !(*this < RHS);
}
};
inline raw_ostream &operator<<(raw_ostream &OS, BranchProbability Prob) {
return Prob.print(OS);
}
template <class ProbabilityIter>
void BranchProbability::normalizeProbabilities(ProbabilityIter Begin,
ProbabilityIter End) {
if (Begin == End)
return;
unsigned UnknownProbCount = 0;
uint64_t Sum = std::accumulate(Begin, End, uint64_t(0),
[&](uint64_t S, const BranchProbability &BP) {
if (!BP.isUnknown())
return S + BP.N;
UnknownProbCount++;
return S;
});
if (UnknownProbCount > 0) {
BranchProbability ProbForUnknown = BranchProbability::getZero();
// If the sum of all known probabilities is less than one, evenly distribute
// the complement of sum to unknown probabilities. Otherwise, set unknown
// probabilities to zeros and continue to normalize known probabilities.
if (Sum < BranchProbability::getDenominator())
ProbForUnknown = BranchProbability::getRaw(
(BranchProbability::getDenominator() - Sum) / UnknownProbCount);
std::replace_if(Begin, End,
[](const BranchProbability &BP) { return BP.isUnknown(); },
ProbForUnknown);
if (Sum <= BranchProbability::getDenominator())
return;
}
if (Sum == 0) {
BranchProbability BP(1, std::distance(Begin, End));
std::fill(Begin, End, BP);
return;
}
for (auto I = Begin; I != End; ++I)
I->N = (I->N * uint64_t(D) + Sum / 2) / Sum;
}
}
#endif
|