1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
|
//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Generic dominator tree construction - This file provides routines to
/// construct immediate dominator information for a flow-graph based on the
/// Semi-NCA algorithm described in this dissertation:
///
/// Linear-Time Algorithms for Dominators and Related Problems
/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
///
/// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
/// out that the theoretically slower O(n*log(n)) implementation is actually
/// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
///
/// The file uses the Depth Based Search algorithm to perform incremental
/// updates (insertion and deletions). The implemented algorithm is based on
/// this publication:
///
/// An Experimental Study of Dynamic Dominators
/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
/// https://arxiv.org/pdf/1604.02711.pdf
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
#include <queue>
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTree.h"
#define DEBUG_TYPE "dom-tree-builder"
namespace llvm {
namespace DomTreeBuilder {
template <typename DomTreeT>
struct SemiNCAInfo {
using NodePtr = typename DomTreeT::NodePtr;
using NodeT = typename DomTreeT::NodeType;
using TreeNodePtr = DomTreeNodeBase<NodeT> *;
using RootsT = decltype(DomTreeT::Roots);
static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
// Information record used by Semi-NCA during tree construction.
struct InfoRec {
unsigned DFSNum = 0;
unsigned Parent = 0;
unsigned Semi = 0;
NodePtr Label = nullptr;
NodePtr IDom = nullptr;
SmallVector<NodePtr, 2> ReverseChildren;
};
// Number to node mapping is 1-based. Initialize the mapping to start with
// a dummy element.
std::vector<NodePtr> NumToNode = {nullptr};
DenseMap<NodePtr, InfoRec> NodeToInfo;
using UpdateT = typename DomTreeT::UpdateType;
struct BatchUpdateInfo {
SmallVector<UpdateT, 4> Updates;
using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
// In order to be able to walk a CFG that is out of sync with the CFG
// DominatorTree last knew about, use the list of updates to reconstruct
// previous CFG versions of the current CFG. For each node, we store a set
// of its virtually added/deleted future successors and predecessors.
// Note that these children are from the future relative to what the
// DominatorTree knows about -- using them to gets us some snapshot of the
// CFG from the past (relative to the state of the CFG).
DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
// Remembers if the whole tree was recalculated at some point during the
// current batch update.
bool IsRecalculated = false;
};
BatchUpdateInfo *BatchUpdates;
using BatchUpdatePtr = BatchUpdateInfo *;
// If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
void clear() {
NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
NodeToInfo.clear();
// Don't reset the pointer to BatchUpdateInfo here -- if there's an update
// in progress, we need this information to continue it.
}
template <bool Inverse>
struct ChildrenGetter {
using ResultTy = SmallVector<NodePtr, 8>;
static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
auto RChildren = reverse(children<NodePtr>(N));
return ResultTy(RChildren.begin(), RChildren.end());
}
static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
auto IChildren = inverse_children<NodePtr>(N);
return ResultTy(IChildren.begin(), IChildren.end());
}
using Tag = std::integral_constant<bool, Inverse>;
// The function below is the core part of the batch updater. It allows the
// Depth Based Search algorithm to perform incremental updates in lockstep
// with updates to the CFG. We emulated lockstep CFG updates by getting its
// next snapshots by reverse-applying future updates.
static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
ResultTy Res = Get(N, Tag());
// If there's no batch update in progress, simply return node's children.
if (!BUI) return Res;
// CFG children are actually its *most current* children, and we have to
// reverse-apply the future updates to get the node's children at the
// point in time the update was performed.
auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
: BUI->FutureSuccessors;
auto FCIt = FutureChildren.find(N);
if (FCIt == FutureChildren.end()) return Res;
for (auto ChildAndKind : FCIt->second) {
const NodePtr Child = ChildAndKind.getPointer();
const UpdateKind UK = ChildAndKind.getInt();
// Reverse-apply the future update.
if (UK == UpdateKind::Insert) {
// If there's an insertion in the future, it means that the edge must
// exist in the current CFG, but was not present in it before.
assert(llvm::find(Res, Child) != Res.end()
&& "Expected child not found in the CFG");
Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
<< BlockNamePrinter(Child) << "\n");
} else {
// If there's an deletion in the future, it means that the edge cannot
// exist in the current CFG, but existed in it before.
assert(llvm::find(Res, Child) == Res.end() &&
"Unexpected child found in the CFG");
LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
<< " -> " << BlockNamePrinter(Child) << "\n");
Res.push_back(Child);
}
}
return Res;
}
};
NodePtr getIDom(NodePtr BB) const {
auto InfoIt = NodeToInfo.find(BB);
if (InfoIt == NodeToInfo.end()) return nullptr;
return InfoIt->second.IDom;
}
TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
if (TreeNodePtr Node = DT.getNode(BB)) return Node;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
NodePtr IDom = getIDom(BB);
assert(IDom || DT.DomTreeNodes[nullptr]);
TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
// Add a new tree node for this NodeT, and link it as a child of
// IDomNode
return (DT.DomTreeNodes[BB] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
.get();
}
static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
struct BlockNamePrinter {
NodePtr N;
BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
if (!BP.N)
O << "nullptr";
else
BP.N->printAsOperand(O, false);
return O;
}
};
// Custom DFS implementation which can skip nodes based on a provided
// predicate. It also collects ReverseChildren so that we don't have to spend
// time getting predecessors in SemiNCA.
//
// If IsReverse is set to true, the DFS walk will be performed backwards
// relative to IsPostDom -- using reverse edges for dominators and forward
// edges for postdominators.
template <bool IsReverse = false, typename DescendCondition>
unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
unsigned AttachToNum) {
assert(V);
SmallVector<NodePtr, 64> WorkList = {V};
if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
while (!WorkList.empty()) {
const NodePtr BB = WorkList.pop_back_val();
auto &BBInfo = NodeToInfo[BB];
// Visited nodes always have positive DFS numbers.
if (BBInfo.DFSNum != 0) continue;
BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
BBInfo.Label = BB;
NumToNode.push_back(BB);
constexpr bool Direction = IsReverse != IsPostDom; // XOR.
for (const NodePtr Succ :
ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
const auto SIT = NodeToInfo.find(Succ);
// Don't visit nodes more than once but remember to collect
// ReverseChildren.
if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
continue;
}
if (!Condition(BB, Succ)) continue;
// It's fine to add Succ to the map, because we know that it will be
// visited later.
auto &SuccInfo = NodeToInfo[Succ];
WorkList.push_back(Succ);
SuccInfo.Parent = LastNum;
SuccInfo.ReverseChildren.push_back(BB);
}
}
return LastNum;
}
NodePtr eval(NodePtr VIn, unsigned LastLinked) {
auto &VInInfo = NodeToInfo[VIn];
if (VInInfo.DFSNum < LastLinked)
return VIn;
SmallVector<NodePtr, 32> Work;
SmallPtrSet<NodePtr, 32> Visited;
if (VInInfo.Parent >= LastLinked)
Work.push_back(VIn);
while (!Work.empty()) {
NodePtr V = Work.back();
auto &VInfo = NodeToInfo[V];
NodePtr VAncestor = NumToNode[VInfo.Parent];
// Process Ancestor first
if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
Work.push_back(VAncestor);
continue;
}
Work.pop_back();
// Update VInfo based on Ancestor info
if (VInfo.Parent < LastLinked)
continue;
auto &VAInfo = NodeToInfo[VAncestor];
NodePtr VAncestorLabel = VAInfo.Label;
NodePtr VLabel = VInfo.Label;
if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Parent = VAInfo.Parent;
}
return VInInfo.Label;
}
// This function requires DFS to be run before calling it.
void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
const unsigned NextDFSNum(NumToNode.size());
// Initialize IDoms to spanning tree parents.
for (unsigned i = 1; i < NextDFSNum; ++i) {
const NodePtr V = NumToNode[i];
auto &VInfo = NodeToInfo[V];
VInfo.IDom = NumToNode[VInfo.Parent];
}
// Step #1: Calculate the semidominators of all vertices.
for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
NodePtr W = NumToNode[i];
auto &WInfo = NodeToInfo[W];
// Initialize the semi dominator to point to the parent node.
WInfo.Semi = WInfo.Parent;
for (const auto &N : WInfo.ReverseChildren) {
if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
continue;
const TreeNodePtr TN = DT.getNode(N);
// Skip predecessors whose level is above the subtree we are processing.
if (TN && TN->getLevel() < MinLevel)
continue;
unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
}
}
// Step #2: Explicitly define the immediate dominator of each vertex.
// IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
// Note that the parents were stored in IDoms and later got invalidated
// during path compression in Eval.
for (unsigned i = 2; i < NextDFSNum; ++i) {
const NodePtr W = NumToNode[i];
auto &WInfo = NodeToInfo[W];
const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
NodePtr WIDomCandidate = WInfo.IDom;
while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
WInfo.IDom = WIDomCandidate;
}
}
// PostDominatorTree always has a virtual root that represents a virtual CFG
// node that serves as a single exit from the function. All the other exits
// (CFG nodes with terminators and nodes in infinite loops are logically
// connected to this virtual CFG exit node).
// This functions maps a nullptr CFG node to the virtual root tree node.
void addVirtualRoot() {
assert(IsPostDom && "Only postdominators have a virtual root");
assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
auto &BBInfo = NodeToInfo[nullptr];
BBInfo.DFSNum = BBInfo.Semi = 1;
BBInfo.Label = nullptr;
NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
}
// For postdominators, nodes with no forward successors are trivial roots that
// are always selected as tree roots. Roots with forward successors correspond
// to CFG nodes within infinite loops.
static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
assert(N && "N must be a valid node");
return !ChildrenGetter<false>::Get(N, BUI).empty();
}
static NodePtr GetEntryNode(const DomTreeT &DT) {
assert(DT.Parent && "Parent not set");
return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
}
// Finds all roots without relaying on the set of roots already stored in the
// tree.
// We define roots to be some non-redundant set of the CFG nodes
static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
assert(DT.Parent && "Parent pointer is not set");
RootsT Roots;
// For dominators, function entry CFG node is always a tree root node.
if (!IsPostDom) {
Roots.push_back(GetEntryNode(DT));
return Roots;
}
SemiNCAInfo SNCA(BUI);
// PostDominatorTree always has a virtual root.
SNCA.addVirtualRoot();
unsigned Num = 1;
LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
// Step #1: Find all the trivial roots that are going to will definitely
// remain tree roots.
unsigned Total = 0;
// It may happen that there are some new nodes in the CFG that are result of
// the ongoing batch update, but we cannot really pretend that they don't
// exist -- we won't see any outgoing or incoming edges to them, so it's
// fine to discover them here, as they would end up appearing in the CFG at
// some point anyway.
for (const NodePtr N : nodes(DT.Parent)) {
++Total;
// If it has no *successors*, it is definitely a root.
if (!HasForwardSuccessors(N, BUI)) {
Roots.push_back(N);
// Run DFS not to walk this part of CFG later.
Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
<< "\n");
LLVM_DEBUG(dbgs() << "Last visited node: "
<< BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
}
}
LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
// Step #2: Find all non-trivial root candidates. Those are CFG nodes that
// are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
// nodes in infinite loops).
bool HasNonTrivialRoots = false;
// Accounting for the virtual exit, see if we had any reverse-unreachable
// nodes.
if (Total + 1 != Num) {
HasNonTrivialRoots = true;
// Make another DFS pass over all other nodes to find the
// reverse-unreachable blocks, and find the furthest paths we'll be able
// to make.
// Note that this looks N^2, but it's really 2N worst case, if every node
// is unreachable. This is because we are still going to only visit each
// unreachable node once, we may just visit it in two directions,
// depending on how lucky we get.
SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
for (const NodePtr I : nodes(DT.Parent)) {
if (SNCA.NodeToInfo.count(I) == 0) {
LLVM_DEBUG(dbgs()
<< "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
// Find the furthest away we can get by following successors, then
// follow them in reverse. This gives us some reasonable answer about
// the post-dom tree inside any infinite loop. In particular, it
// guarantees we get to the farthest away point along *some*
// path. This also matches the GCC's behavior.
// If we really wanted a totally complete picture of dominance inside
// this infinite loop, we could do it with SCC-like algorithms to find
// the lowest and highest points in the infinite loop. In theory, it
// would be nice to give the canonical backedge for the loop, but it's
// expensive and does not always lead to a minimal set of roots.
LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
<< "(non-trivial root): "
<< BlockNamePrinter(FurthestAway) << "\n");
ConnectToExitBlock.insert(FurthestAway);
Roots.push_back(FurthestAway);
LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
<< NewNum << "\n\t\t\tRemoving DFS info\n");
for (unsigned i = NewNum; i > Num; --i) {
const NodePtr N = SNCA.NumToNode[i];
LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
<< BlockNamePrinter(N) << "\n");
SNCA.NodeToInfo.erase(N);
SNCA.NumToNode.pop_back();
}
const unsigned PrevNum = Num;
LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
for (unsigned i = PrevNum + 1; i <= Num; ++i)
LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
<< BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
}
}
}
LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
<< i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
assert((Total + 1 == Num) && "Everything should have been visited");
// Step #3: If we found some non-trivial roots, make them non-redundant.
if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
LLVM_DEBUG(dbgs() << "Found roots: ");
LLVM_DEBUG(for (auto *Root
: Roots) dbgs()
<< BlockNamePrinter(Root) << " ");
LLVM_DEBUG(dbgs() << "\n");
return Roots;
}
// This function only makes sense for postdominators.
// We define roots to be some set of CFG nodes where (reverse) DFS walks have
// to start in order to visit all the CFG nodes (including the
// reverse-unreachable ones).
// When the search for non-trivial roots is done it may happen that some of
// the non-trivial roots are reverse-reachable from other non-trivial roots,
// which makes them redundant. This function removes them from the set of
// input roots.
static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
RootsT &Roots) {
assert(IsPostDom && "This function is for postdominators only");
LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
SemiNCAInfo SNCA(BUI);
for (unsigned i = 0; i < Roots.size(); ++i) {
auto &Root = Roots[i];
// Trivial roots are always non-redundant.
if (!HasForwardSuccessors(Root, BUI)) continue;
LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
<< " remains a root\n");
SNCA.clear();
// Do a forward walk looking for the other roots.
const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
// Skip the start node and begin from the second one (note that DFS uses
// 1-based indexing).
for (unsigned x = 2; x <= Num; ++x) {
const NodePtr N = SNCA.NumToNode[x];
// If we wound another root in a (forward) DFS walk, remove the current
// root from the set of roots, as it is reverse-reachable from the other
// one.
if (llvm::find(Roots, N) != Roots.end()) {
LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
<< BlockNamePrinter(N) << "\n\tRemoving root "
<< BlockNamePrinter(Root) << "\n");
std::swap(Root, Roots.back());
Roots.pop_back();
// Root at the back takes the current root's place.
// Start the next loop iteration with the same index.
--i;
break;
}
}
}
}
template <typename DescendCondition>
void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
if (!IsPostDom) {
assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
runDFS(DT.Roots[0], 0, DC, 0);
return;
}
addVirtualRoot();
unsigned Num = 1;
for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
}
static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
auto *Parent = DT.Parent;
DT.reset();
DT.Parent = Parent;
SemiNCAInfo SNCA(nullptr); // Since we are rebuilding the whole tree,
// there's no point doing it incrementally.
// Step #0: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
DT.Roots = FindRoots(DT, nullptr);
SNCA.doFullDFSWalk(DT, AlwaysDescend);
SNCA.runSemiNCA(DT);
if (BUI) {
BUI->IsRecalculated = true;
LLVM_DEBUG(
dbgs() << "DomTree recalculated, skipping future batch updates\n");
}
if (DT.Roots.empty()) return;
// Add a node for the root. If the tree is a PostDominatorTree it will be
// the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
// all real exits (including multiple exit blocks, infinite loops).
NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
DT.RootNode = (DT.DomTreeNodes[Root] =
llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
.get();
SNCA.attachNewSubtree(DT, DT.RootNode);
}
void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
// Attach the first unreachable block to AttachTo.
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
// Loop over all of the discovered blocks in the function...
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
NodePtr W = NumToNode[i];
LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
<< BlockNamePrinter(W) << "\n");
// Don't replace this with 'count', the insertion side effect is important
if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
NodePtr ImmDom = getIDom(W);
// Get or calculate the node for the immediate dominator.
TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode.
DT.DomTreeNodes[W] = IDomNode->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
}
}
void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
const NodePtr N = NumToNode[i];
const TreeNodePtr TN = DT.getNode(N);
assert(TN);
const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
TN->setIDom(NewIDom);
}
}
// Helper struct used during edge insertions.
struct InsertionInfo {
using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
struct DecreasingLevel {
bool operator()(const BucketElementTy &First,
const BucketElementTy &Second) const {
return First.first > Second.first;
}
};
std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
DecreasingLevel>
Bucket; // Queue of tree nodes sorted by level in descending order.
SmallDenseSet<TreeNodePtr, 8> Affected;
SmallDenseMap<TreeNodePtr, unsigned, 8> Visited;
SmallVector<TreeNodePtr, 8> AffectedQueue;
SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
};
static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
const NodePtr From, const NodePtr To) {
assert((From || IsPostDom) &&
"From has to be a valid CFG node or a virtual root");
assert(To && "Cannot be a nullptr");
LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
<< BlockNamePrinter(To) << "\n");
TreeNodePtr FromTN = DT.getNode(From);
if (!FromTN) {
// Ignore edges from unreachable nodes for (forward) dominators.
if (!IsPostDom) return;
// The unreachable node becomes a new root -- a tree node for it.
TreeNodePtr VirtualRoot = DT.getNode(nullptr);
FromTN =
(DT.DomTreeNodes[From] = VirtualRoot->addChild(
llvm::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
.get();
DT.Roots.push_back(From);
}
DT.DFSInfoValid = false;
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN)
InsertUnreachable(DT, BUI, FromTN, To);
else
InsertReachable(DT, BUI, FromTN, ToTN);
}
// Determines if some existing root becomes reverse-reachable after the
// insertion. Rebuilds the whole tree if that situation happens.
static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr From,
const TreeNodePtr To) {
assert(IsPostDom && "This function is only for postdominators");
// Destination node is not attached to the virtual root, so it cannot be a
// root.
if (!DT.isVirtualRoot(To->getIDom())) return false;
auto RIt = llvm::find(DT.Roots, To->getBlock());
if (RIt == DT.Roots.end())
return false; // To is not a root, nothing to update.
LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
<< " is no longer a root\n\t\tRebuilding the tree!!!\n");
CalculateFromScratch(DT, BUI);
return true;
}
// Updates the set of roots after insertion or deletion. This ensures that
// roots are the same when after a series of updates and when the tree would
// be built from scratch.
static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
assert(IsPostDom && "This function is only for postdominators");
// The tree has only trivial roots -- nothing to update.
if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
return HasForwardSuccessors(N, BUI);
}))
return;
// Recalculate the set of roots.
auto Roots = FindRoots(DT, BUI);
if (DT.Roots.size() != Roots.size() ||
!std::is_permutation(DT.Roots.begin(), DT.Roots.end(), Roots.begin())) {
// The roots chosen in the CFG have changed. This is because the
// incremental algorithm does not really know or use the set of roots and
// can make a different (implicit) decision about which node within an
// infinite loop becomes a root.
LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
<< "The entire tree needs to be rebuilt\n");
// It may be possible to update the tree without recalculating it, but
// we do not know yet how to do it, and it happens rarely in practise.
CalculateFromScratch(DT, BUI);
return;
}
}
// Handles insertion to a node already in the dominator tree.
static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr From, const TreeNodePtr To) {
LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
<< " -> " << BlockNamePrinter(To->getBlock()) << "\n");
if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
// DT.findNCD expects both pointers to be valid. When From is a virtual
// root, then its CFG block pointer is a nullptr, so we have to 'compute'
// the NCD manually.
const NodePtr NCDBlock =
(From->getBlock() && To->getBlock())
? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
: nullptr;
assert(NCDBlock || DT.isPostDominator());
const TreeNodePtr NCD = DT.getNode(NCDBlock);
assert(NCD);
LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
const TreeNodePtr ToIDom = To->getIDom();
// Nothing affected -- NCA property holds.
// (Based on the lemma 2.5 from the second paper.)
if (NCD == To || NCD == ToIDom) return;
// Identify and collect affected nodes.
InsertionInfo II;
LLVM_DEBUG(dbgs() << "Marking " << BlockNamePrinter(To)
<< " as affected\n");
II.Affected.insert(To);
const unsigned ToLevel = To->getLevel();
LLVM_DEBUG(dbgs() << "Putting " << BlockNamePrinter(To)
<< " into a Bucket\n");
II.Bucket.push({ToLevel, To});
while (!II.Bucket.empty()) {
const TreeNodePtr CurrentNode = II.Bucket.top().second;
const unsigned CurrentLevel = CurrentNode->getLevel();
II.Bucket.pop();
LLVM_DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
<< BlockNamePrinter(CurrentNode) << "\n");
II.Visited.insert({CurrentNode, CurrentLevel});
II.AffectedQueue.push_back(CurrentNode);
// Discover and collect affected successors of the current node.
VisitInsertion(DT, BUI, CurrentNode, CurrentLevel, NCD, II);
}
// Finish by updating immediate dominators and levels.
UpdateInsertion(DT, BUI, NCD, II);
}
// Visits an affected node and collect its affected successors.
static void VisitInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr TN, const unsigned RootLevel,
const TreeNodePtr NCD, InsertionInfo &II) {
const unsigned NCDLevel = NCD->getLevel();
LLVM_DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << ", RootLevel "
<< RootLevel << "\n");
SmallVector<TreeNodePtr, 8> Stack = {TN};
assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
SmallPtrSet<TreeNodePtr, 8> Processed;
do {
TreeNodePtr Next = Stack.pop_back_val();
LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(Next) << "\n");
for (const NodePtr Succ :
ChildrenGetter<IsPostDom>::Get(Next->getBlock(), BUI)) {
const TreeNodePtr SuccTN = DT.getNode(Succ);
assert(SuccTN && "Unreachable successor found at reachable insertion");
const unsigned SuccLevel = SuccTN->getLevel();
LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
<< ", level = " << SuccLevel << "\n");
// Do not process the same node multiple times.
if (Processed.count(Next) > 0)
continue;
// Succ dominated by subtree From -- not affected.
// (Based on the lemma 2.5 from the second paper.)
if (SuccLevel > RootLevel) {
LLVM_DEBUG(dbgs() << "\t\tDominated by subtree From\n");
if (II.Visited.count(SuccTN) != 0) {
LLVM_DEBUG(dbgs() << "\t\t\talready visited at level "
<< II.Visited[SuccTN] << "\n\t\t\tcurrent level "
<< RootLevel << ")\n");
// A node can be necessary to visit again if we see it again at
// a lower level than before.
if (II.Visited[SuccTN] >= RootLevel)
continue;
}
LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
<< BlockNamePrinter(Succ) << "\n");
II.Visited.insert({SuccTN, RootLevel});
II.VisitedNotAffectedQueue.push_back(SuccTN);
Stack.push_back(SuccTN);
} else if ((SuccLevel > NCDLevel + 1) &&
II.Affected.count(SuccTN) == 0) {
LLVM_DEBUG(dbgs() << "\t\tMarking affected and adding "
<< BlockNamePrinter(Succ) << " to a Bucket\n");
II.Affected.insert(SuccTN);
II.Bucket.push({SuccLevel, SuccTN});
}
}
Processed.insert(Next);
} while (!Stack.empty());
}
// Updates immediate dominators and levels after insertion.
static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr NCD, InsertionInfo &II) {
LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
for (const TreeNodePtr TN : II.AffectedQueue) {
LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
<< ") = " << BlockNamePrinter(NCD) << "\n");
TN->setIDom(NCD);
}
UpdateLevelsAfterInsertion(II);
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
}
static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
LLVM_DEBUG(
dbgs() << "Updating levels for visited but not affected nodes\n");
for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
LLVM_DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
<< BlockNamePrinter(TN->getIDom()) << ") "
<< TN->getIDom()->getLevel() << " + 1\n");
TN->UpdateLevel();
}
}
// Handles insertion to previously unreachable nodes.
static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr From, const NodePtr To) {
LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
<< " -> (unreachable) " << BlockNamePrinter(To) << "\n");
// Collect discovered edges to already reachable nodes.
SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
// Discover and connect nodes that became reachable with the insertion.
ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
<< " -> (prev unreachable) " << BlockNamePrinter(To)
<< "\n");
// Used the discovered edges and inset discovered connecting (incoming)
// edges.
for (const auto &Edge : DiscoveredEdgesToReachable) {
LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
<< BlockNamePrinter(Edge.first) << " -> "
<< BlockNamePrinter(Edge.second) << "\n");
InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
}
}
// Connects nodes that become reachable with an insertion.
static void ComputeUnreachableDominators(
DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
const TreeNodePtr Incoming,
SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
&DiscoveredConnectingEdges) {
assert(!DT.getNode(Root) && "Root must not be reachable");
// Visit only previously unreachable nodes.
auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
NodePtr To) {
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN) return true;
DiscoveredConnectingEdges.push_back({From, ToTN});
return false;
};
SemiNCAInfo SNCA(BUI);
SNCA.runDFS(Root, 0, UnreachableDescender, 0);
SNCA.runSemiNCA(DT);
SNCA.attachNewSubtree(DT, Incoming);
LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
}
static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
const NodePtr From, const NodePtr To) {
assert(From && To && "Cannot disconnect nullptrs");
LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
<< BlockNamePrinter(To) << "\n");
#ifndef NDEBUG
// Ensure that the edge was in fact deleted from the CFG before informing
// the DomTree about it.
// The check is O(N), so run it only in debug configuration.
auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
return llvm::find(Successors, SuccCandidate) != Successors.end();
};
(void)IsSuccessor;
assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
#endif
const TreeNodePtr FromTN = DT.getNode(From);
// Deletion in an unreachable subtree -- nothing to do.
if (!FromTN) return;
const TreeNodePtr ToTN = DT.getNode(To);
if (!ToTN) {
LLVM_DEBUG(
dbgs() << "\tTo (" << BlockNamePrinter(To)
<< ") already unreachable -- there is no edge to delete\n");
return;
}
const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
const TreeNodePtr NCD = DT.getNode(NCDBlock);
// If To dominates From -- nothing to do.
if (ToTN != NCD) {
DT.DFSInfoValid = false;
const TreeNodePtr ToIDom = ToTN->getIDom();
LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
<< BlockNamePrinter(ToIDom) << "\n");
// To remains reachable after deletion.
// (Based on the caption under Figure 4. from the second paper.)
if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
DeleteReachable(DT, BUI, FromTN, ToTN);
else
DeleteUnreachable(DT, BUI, ToTN);
}
if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
}
// Handles deletions that leave destination nodes reachable.
static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr FromTN,
const TreeNodePtr ToTN) {
LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
<< " -> " << BlockNamePrinter(ToTN) << "\n");
LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
// Find the top of the subtree that needs to be rebuilt.
// (Based on the lemma 2.6 from the second paper.)
const NodePtr ToIDom =
DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
assert(ToIDom || DT.isPostDominator());
const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
assert(ToIDomTN);
const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
// Top of the subtree to rebuild is the root node. Rebuild the tree from
// scratch.
if (!PrevIDomSubTree) {
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
CalculateFromScratch(DT, BUI);
return;
}
// Only visit nodes in the subtree starting at To.
const unsigned Level = ToIDomTN->getLevel();
auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
return DT.getNode(To)->getLevel() > Level;
};
LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
<< "\n");
SemiNCAInfo SNCA(BUI);
SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
SNCA.runSemiNCA(DT, Level);
SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
}
// Checks if a node has proper support, as defined on the page 3 and later
// explained on the page 7 of the second paper.
static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr TN) {
LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
<< "\n");
for (const NodePtr Pred :
ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
if (!DT.getNode(Pred)) continue;
const NodePtr Support =
DT.findNearestCommonDominator(TN->getBlock(), Pred);
LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
if (Support != TN->getBlock()) {
LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
<< " is reachable from support "
<< BlockNamePrinter(Support) << "\n");
return true;
}
}
return false;
}
// Handle deletions that make destination node unreachable.
// (Based on the lemma 2.7 from the second paper.)
static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
const TreeNodePtr ToTN) {
LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
<< BlockNamePrinter(ToTN) << "\n");
assert(ToTN);
assert(ToTN->getBlock());
if (IsPostDom) {
// Deletion makes a region reverse-unreachable and creates a new root.
// Simulate that by inserting an edge from the virtual root to ToTN and
// adding it as a new root.
LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
<< "\n");
DT.Roots.push_back(ToTN->getBlock());
InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
return;
}
SmallVector<NodePtr, 16> AffectedQueue;
const unsigned Level = ToTN->getLevel();
// Traverse destination node's descendants with greater level in the tree
// and collect visited nodes.
auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
const TreeNodePtr TN = DT.getNode(To);
assert(TN);
if (TN->getLevel() > Level) return true;
if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
AffectedQueue.push_back(To);
return false;
};
SemiNCAInfo SNCA(BUI);
unsigned LastDFSNum =
SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
TreeNodePtr MinNode = ToTN;
// Identify the top of the subtree to rebuild by finding the NCD of all
// the affected nodes.
for (const NodePtr N : AffectedQueue) {
const TreeNodePtr TN = DT.getNode(N);
const NodePtr NCDBlock =
DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
assert(NCDBlock || DT.isPostDominator());
const TreeNodePtr NCD = DT.getNode(NCDBlock);
assert(NCD);
LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
<< " with NCD = " << BlockNamePrinter(NCD)
<< ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
}
// Root reached, rebuild the whole tree from scratch.
if (!MinNode->getIDom()) {
LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
CalculateFromScratch(DT, BUI);
return;
}
// Erase the unreachable subtree in reverse preorder to process all children
// before deleting their parent.
for (unsigned i = LastDFSNum; i > 0; --i) {
const NodePtr N = SNCA.NumToNode[i];
const TreeNodePtr TN = DT.getNode(N);
LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
EraseNode(DT, TN);
}
// The affected subtree start at the To node -- there's no extra work to do.
if (MinNode == ToTN) return;
LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
<< BlockNamePrinter(MinNode) << "\n");
const unsigned MinLevel = MinNode->getLevel();
const TreeNodePtr PrevIDom = MinNode->getIDom();
assert(PrevIDom);
SNCA.clear();
// Identify nodes that remain in the affected subtree.
auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
const TreeNodePtr ToTN = DT.getNode(To);
return ToTN && ToTN->getLevel() > MinLevel;
};
SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
<< BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
// Rebuild the remaining part of affected subtree.
SNCA.runSemiNCA(DT, MinLevel);
SNCA.reattachExistingSubtree(DT, PrevIDom);
}
// Removes leaf tree nodes from the dominator tree.
static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
assert(TN);
assert(TN->getNumChildren() == 0 && "Not a tree leaf");
const TreeNodePtr IDom = TN->getIDom();
assert(IDom);
auto ChIt = llvm::find(IDom->Children, TN);
assert(ChIt != IDom->Children.end());
std::swap(*ChIt, IDom->Children.back());
IDom->Children.pop_back();
DT.DomTreeNodes.erase(TN->getBlock());
}
//~~
//===--------------------- DomTree Batch Updater --------------------------===
//~~
static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
const size_t NumUpdates = Updates.size();
if (NumUpdates == 0)
return;
// Take the fast path for a single update and avoid running the batch update
// machinery.
if (NumUpdates == 1) {
const auto &Update = Updates.front();
if (Update.getKind() == UpdateKind::Insert)
DT.insertEdge(Update.getFrom(), Update.getTo());
else
DT.deleteEdge(Update.getFrom(), Update.getTo());
return;
}
BatchUpdateInfo BUI;
LegalizeUpdates(Updates, BUI.Updates);
const size_t NumLegalized = BUI.Updates.size();
BUI.FutureSuccessors.reserve(NumLegalized);
BUI.FuturePredecessors.reserve(NumLegalized);
// Use the legalized future updates to initialize future successors and
// predecessors. Note that these sets will only decrease size over time, as
// the next CFG snapshots slowly approach the actual (current) CFG.
for (UpdateT &U : BUI.Updates) {
BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
}
LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
: reverse(BUI.Updates)) dbgs()
<< '\t' << U << "\n");
LLVM_DEBUG(dbgs() << "\n");
// Recalculate the DominatorTree when the number of updates
// exceeds a threshold, which usually makes direct updating slower than
// recalculation. We select this threshold proportional to the
// size of the DominatorTree. The constant is selected
// by choosing the one with an acceptable performance on some real-world
// inputs.
// Make unittests of the incremental algorithm work
if (DT.DomTreeNodes.size() <= 100) {
if (NumLegalized > DT.DomTreeNodes.size())
CalculateFromScratch(DT, &BUI);
} else if (NumLegalized > DT.DomTreeNodes.size() / 40)
CalculateFromScratch(DT, &BUI);
// If the DominatorTree was recalculated at some point, stop the batch
// updates. Full recalculations ignore batch updates and look at the actual
// CFG.
for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
ApplyNextUpdate(DT, BUI);
}
// This function serves double purpose:
// a) It removes redundant updates, which makes it easier to reverse-apply
// them when traversing CFG.
// b) It optimizes away updates that cancel each other out, as the end result
// is the same.
//
// It relies on the property of the incremental updates that says that the
// order of updates doesn't matter. This allows us to reorder them and end up
// with the exact same DomTree every time.
//
// Following the same logic, the function doesn't care about the order of
// input updates, so it's OK to pass it an unordered sequence of updates, that
// doesn't make sense when applied sequentially, eg. performing double
// insertions or deletions and then doing an opposite update.
//
// In the future, it should be possible to schedule updates in way that
// minimizes the amount of work needed done during incremental updates.
static void LegalizeUpdates(ArrayRef<UpdateT> AllUpdates,
SmallVectorImpl<UpdateT> &Result) {
LLVM_DEBUG(dbgs() << "Legalizing " << AllUpdates.size() << " updates\n");
// Count the total number of inserions of each edge.
// Each insertion adds 1 and deletion subtracts 1. The end number should be
// one of {-1 (deletion), 0 (NOP), +1 (insertion)}. Otherwise, the sequence
// of updates contains multiple updates of the same kind and we assert for
// that case.
SmallDenseMap<std::pair<NodePtr, NodePtr>, int, 4> Operations;
Operations.reserve(AllUpdates.size());
for (const auto &U : AllUpdates) {
NodePtr From = U.getFrom();
NodePtr To = U.getTo();
if (IsPostDom) std::swap(From, To); // Reverse edge for postdominators.
Operations[{From, To}] += (U.getKind() == UpdateKind::Insert ? 1 : -1);
}
Result.clear();
Result.reserve(Operations.size());
for (auto &Op : Operations) {
const int NumInsertions = Op.second;
assert(std::abs(NumInsertions) <= 1 && "Unbalanced operations!");
if (NumInsertions == 0) continue;
const UpdateKind UK =
NumInsertions > 0 ? UpdateKind::Insert : UpdateKind::Delete;
Result.push_back({UK, Op.first.first, Op.first.second});
}
// Make the order consistent by not relying on pointer values within the
// set. Reuse the old Operations map.
// In the future, we should sort by something else to minimize the amount
// of work needed to perform the series of updates.
for (size_t i = 0, e = AllUpdates.size(); i != e; ++i) {
const auto &U = AllUpdates[i];
if (!IsPostDom)
Operations[{U.getFrom(), U.getTo()}] = int(i);
else
Operations[{U.getTo(), U.getFrom()}] = int(i);
}
llvm::sort(Result.begin(), Result.end(),
[&Operations](const UpdateT &A, const UpdateT &B) {
return Operations[{A.getFrom(), A.getTo()}] >
Operations[{B.getFrom(), B.getTo()}];
});
}
static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
assert(!BUI.Updates.empty() && "No updates to apply!");
UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
LLVM_DEBUG(dbgs() << "Applying update: " << CurrentUpdate << "\n");
// Move to the next snapshot of the CFG by removing the reverse-applied
// current update. Since updates are performed in the same order they are
// legalized it's sufficient to pop the last item here.
auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
FS.back().getInt() == CurrentUpdate.getKind());
FS.pop_back();
if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
FP.back().getInt() == CurrentUpdate.getKind());
FP.pop_back();
if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
if (CurrentUpdate.getKind() == UpdateKind::Insert)
InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
else
DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
}
//~~
//===--------------- DomTree correctness verification ---------------------===
//~~
// Check if the tree has correct roots. A DominatorTree always has a single
// root which is the function's entry node. A PostDominatorTree can have
// multiple roots - one for each node with no successors and for infinite
// loops.
// Running time: O(N).
bool verifyRoots(const DomTreeT &DT) {
if (!DT.Parent && !DT.Roots.empty()) {
errs() << "Tree has no parent but has roots!\n";
errs().flush();
return false;
}
if (!IsPostDom) {
if (DT.Roots.empty()) {
errs() << "Tree doesn't have a root!\n";
errs().flush();
return false;
}
if (DT.getRoot() != GetEntryNode(DT)) {
errs() << "Tree's root is not its parent's entry node!\n";
errs().flush();
return false;
}
}
RootsT ComputedRoots = FindRoots(DT, nullptr);
if (DT.Roots.size() != ComputedRoots.size() ||
!std::is_permutation(DT.Roots.begin(), DT.Roots.end(),
ComputedRoots.begin())) {
errs() << "Tree has different roots than freshly computed ones!\n";
errs() << "\tPDT roots: ";
for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
errs() << "\n\tComputed roots: ";
for (const NodePtr N : ComputedRoots)
errs() << BlockNamePrinter(N) << ", ";
errs() << "\n";
errs().flush();
return false;
}
return true;
}
// Checks if the tree contains all reachable nodes in the input graph.
// Running time: O(N).
bool verifyReachability(const DomTreeT &DT) {
clear();
doFullDFSWalk(DT, AlwaysDescend);
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
// Virtual root has a corresponding virtual CFG node.
if (DT.isVirtualRoot(TN)) continue;
if (NodeToInfo.count(BB) == 0) {
errs() << "DomTree node " << BlockNamePrinter(BB)
<< " not found by DFS walk!\n";
errs().flush();
return false;
}
}
for (const NodePtr N : NumToNode) {
if (N && !DT.getNode(N)) {
errs() << "CFG node " << BlockNamePrinter(N)
<< " not found in the DomTree!\n";
errs().flush();
return false;
}
}
return true;
}
// Check if for every parent with a level L in the tree all of its children
// have level L + 1.
// Running time: O(N).
static bool VerifyLevels(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB) continue;
const TreeNodePtr IDom = TN->getIDom();
if (!IDom && TN->getLevel() != 0) {
errs() << "Node without an IDom " << BlockNamePrinter(BB)
<< " has a nonzero level " << TN->getLevel() << "!\n";
errs().flush();
return false;
}
if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
errs() << "Node " << BlockNamePrinter(BB) << " has level "
<< TN->getLevel() << " while its IDom "
<< BlockNamePrinter(IDom->getBlock()) << " has level "
<< IDom->getLevel() << "!\n";
errs().flush();
return false;
}
}
return true;
}
// Check if the computed DFS numbers are correct. Note that DFS info may not
// be valid, and when that is the case, we don't verify the numbers.
// Running time: O(N log(N)).
static bool VerifyDFSNumbers(const DomTreeT &DT) {
if (!DT.DFSInfoValid || !DT.Parent)
return true;
const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
const TreeNodePtr Root = DT.getNode(RootBB);
auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
<< TN->getDFSNumOut() << '}';
};
// Verify the root's DFS In number. Although DFS numbering would also work
// if we started from some other value, we assume 0-based numbering.
if (Root->getDFSNumIn() != 0) {
errs() << "DFSIn number for the tree root is not:\n\t";
PrintNodeAndDFSNums(Root);
errs() << '\n';
errs().flush();
return false;
}
// For each tree node verify if children's DFS numbers cover their parent's
// DFS numbers with no gaps.
for (const auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr Node = NodeToTN.second.get();
// Handle tree leaves.
if (Node->getChildren().empty()) {
if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
PrintNodeAndDFSNums(Node);
errs() << '\n';
errs().flush();
return false;
}
continue;
}
// Make a copy and sort it such that it is possible to check if there are
// no gaps between DFS numbers of adjacent children.
SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
llvm::sort(Children.begin(), Children.end(),
[](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
});
auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
assert(FirstCh);
errs() << "Incorrect DFS numbers for:\n\tParent ";
PrintNodeAndDFSNums(Node);
errs() << "\n\tChild ";
PrintNodeAndDFSNums(FirstCh);
if (SecondCh) {
errs() << "\n\tSecond child ";
PrintNodeAndDFSNums(SecondCh);
}
errs() << "\nAll children: ";
for (const TreeNodePtr Ch : Children) {
PrintNodeAndDFSNums(Ch);
errs() << ", ";
}
errs() << '\n';
errs().flush();
};
if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
PrintChildrenError(Children.front(), nullptr);
return false;
}
if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
PrintChildrenError(Children.back(), nullptr);
return false;
}
for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
PrintChildrenError(Children[i], Children[i + 1]);
return false;
}
}
}
return true;
}
// The below routines verify the correctness of the dominator tree relative to
// the CFG it's coming from. A tree is a dominator tree iff it has two
// properties, called the parent property and the sibling property. Tarjan
// and Lengauer prove (but don't explicitly name) the properties as part of
// the proofs in their 1972 paper, but the proofs are mostly part of proving
// things about semidominators and idoms, and some of them are simply asserted
// based on even earlier papers (see, e.g., lemma 2). Some papers refer to
// these properties as "valid" and "co-valid". See, e.g., "Dominators,
// directed bipolar orders, and independent spanning trees" by Loukas
// Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
// and Vertex-Disjoint Paths " by the same authors.
// A very simple and direct explanation of these properties can be found in
// "An Experimental Study of Dynamic Dominators", found at
// https://arxiv.org/abs/1604.02711
// The easiest way to think of the parent property is that it's a requirement
// of being a dominator. Let's just take immediate dominators. For PARENT to
// be an immediate dominator of CHILD, all paths in the CFG must go through
// PARENT before they hit CHILD. This implies that if you were to cut PARENT
// out of the CFG, there should be no paths to CHILD that are reachable. If
// there are, then you now have a path from PARENT to CHILD that goes around
// PARENT and still reaches CHILD, which by definition, means PARENT can't be
// a dominator of CHILD (let alone an immediate one).
// The sibling property is similar. It says that for each pair of sibling
// nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
// other. If sibling LEFT dominated sibling RIGHT, it means there are no
// paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
// LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
// RIGHT, not a sibling.
// It is possible to verify the parent and sibling properties in
// linear time, but the algorithms are complex. Instead, we do it in a
// straightforward N^2 and N^3 way below, using direct path reachability.
// Checks if the tree has the parent property: if for all edges from V to W in
// the input graph, such that V is reachable, the parent of W in the tree is
// an ancestor of V in the tree.
// Running time: O(N^2).
//
// This means that if a node gets disconnected from the graph, then all of
// the nodes it dominated previously will now become unreachable.
bool verifyParentProperty(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB || TN->getChildren().empty()) continue;
LLVM_DEBUG(dbgs() << "Verifying parent property of node "
<< BlockNamePrinter(TN) << "\n");
clear();
doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
return From != BB && To != BB;
});
for (TreeNodePtr Child : TN->getChildren())
if (NodeToInfo.count(Child->getBlock()) != 0) {
errs() << "Child " << BlockNamePrinter(Child)
<< " reachable after its parent " << BlockNamePrinter(BB)
<< " is removed!\n";
errs().flush();
return false;
}
}
return true;
}
// Check if the tree has sibling property: if a node V does not dominate a
// node W for all siblings V and W in the tree.
// Running time: O(N^3).
//
// This means that if a node gets disconnected from the graph, then all of its
// siblings will now still be reachable.
bool verifySiblingProperty(const DomTreeT &DT) {
for (auto &NodeToTN : DT.DomTreeNodes) {
const TreeNodePtr TN = NodeToTN.second.get();
const NodePtr BB = TN->getBlock();
if (!BB || TN->getChildren().empty()) continue;
const auto &Siblings = TN->getChildren();
for (const TreeNodePtr N : Siblings) {
clear();
NodePtr BBN = N->getBlock();
doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
return From != BBN && To != BBN;
});
for (const TreeNodePtr S : Siblings) {
if (S == N) continue;
if (NodeToInfo.count(S->getBlock()) == 0) {
errs() << "Node " << BlockNamePrinter(S)
<< " not reachable when its sibling " << BlockNamePrinter(N)
<< " is removed!\n";
errs().flush();
return false;
}
}
}
}
return true;
}
// Check if the given tree is the same as a freshly computed one for the same
// Parent.
// Running time: O(N^2), but faster in practise (same as tree construction).
//
// Note that this does not check if that the tree construction algorithm is
// correct and should be only used for fast (but possibly unsound)
// verification.
static bool IsSameAsFreshTree(const DomTreeT &DT) {
DomTreeT FreshTree;
FreshTree.recalculate(*DT.Parent);
const bool Different = DT.compare(FreshTree);
if (Different) {
errs() << (DT.isPostDominator() ? "Post" : "")
<< "DominatorTree is different than a freshly computed one!\n"
<< "\tCurrent:\n";
DT.print(errs());
errs() << "\n\tFreshly computed tree:\n";
FreshTree.print(errs());
errs().flush();
}
return !Different;
}
};
template <class DomTreeT>
void Calculate(DomTreeT &DT) {
SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
}
template <class DomTreeT>
void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To) {
if (DT.isPostDominator()) std::swap(From, To);
SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
}
template <class DomTreeT>
void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
typename DomTreeT::NodePtr To) {
if (DT.isPostDominator()) std::swap(From, To);
SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
}
template <class DomTreeT>
void ApplyUpdates(DomTreeT &DT,
ArrayRef<typename DomTreeT::UpdateType> Updates) {
SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
}
template <class DomTreeT>
bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
SemiNCAInfo<DomTreeT> SNCA(nullptr);
// Simplist check is to compare against a new tree. This will also
// usefully print the old and new trees, if they are different.
if (!SNCA.IsSameAsFreshTree(DT))
return false;
// Common checks to verify the properties of the tree. O(N log N) at worst
if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
!SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
return false;
// Extra checks depending on VerificationLevel. Up to O(N^3)
if (VL == DomTreeT::VerificationLevel::Basic ||
VL == DomTreeT::VerificationLevel::Full)
if (!SNCA.verifyParentProperty(DT))
return false;
if (VL == DomTreeT::VerificationLevel::Full)
if (!SNCA.verifySiblingProperty(DT))
return false;
return true;
}
} // namespace DomTreeBuilder
} // namespace llvm
#undef DEBUG_TYPE
#endif
|