1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
//===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_PARALLEL_H
#define LLVM_SUPPORT_PARALLEL_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <condition_variable>
#include <functional>
#include <mutex>
#if defined(_MSC_VER) && LLVM_ENABLE_THREADS
#pragma warning(push)
#pragma warning(disable : 4530)
#include <concrt.h>
#include <ppl.h>
#pragma warning(pop)
#endif
namespace llvm {
namespace parallel {
struct sequential_execution_policy {};
struct parallel_execution_policy {};
template <typename T>
struct is_execution_policy
: public std::integral_constant<
bool, llvm::is_one_of<T, sequential_execution_policy,
parallel_execution_policy>::value> {};
constexpr sequential_execution_policy seq{};
constexpr parallel_execution_policy par{};
namespace detail {
#if LLVM_ENABLE_THREADS
class Latch {
uint32_t Count;
mutable std::mutex Mutex;
mutable std::condition_variable Cond;
public:
explicit Latch(uint32_t Count = 0) : Count(Count) {}
~Latch() { sync(); }
void inc() {
std::lock_guard<std::mutex> lock(Mutex);
++Count;
}
void dec() {
std::lock_guard<std::mutex> lock(Mutex);
if (--Count == 0)
Cond.notify_all();
}
void sync() const {
std::unique_lock<std::mutex> lock(Mutex);
Cond.wait(lock, [&] { return Count == 0; });
}
};
class TaskGroup {
Latch L;
public:
void spawn(std::function<void()> f);
void sync() const { L.sync(); }
};
#if defined(_MSC_VER)
template <class RandomAccessIterator, class Comparator>
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp) {
concurrency::parallel_sort(Start, End, Comp);
}
template <class IterTy, class FuncTy>
void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
concurrency::parallel_for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
concurrency::parallel_for(Begin, End, Fn);
}
#else
const ptrdiff_t MinParallelSize = 1024;
/// Inclusive median.
template <class RandomAccessIterator, class Comparator>
RandomAccessIterator medianOf3(RandomAccessIterator Start,
RandomAccessIterator End,
const Comparator &Comp) {
RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2);
return Comp(*Start, *(End - 1))
? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start)
: End - 1)
: (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1)
: Start);
}
template <class RandomAccessIterator, class Comparator>
void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp, TaskGroup &TG, size_t Depth) {
// Do a sequential sort for small inputs.
if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) {
llvm::sort(Start, End, Comp);
return;
}
// Partition.
auto Pivot = medianOf3(Start, End, Comp);
// Move Pivot to End.
std::swap(*(End - 1), *Pivot);
Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) {
return Comp(V, *(End - 1));
});
// Move Pivot to middle of partition.
std::swap(*Pivot, *(End - 1));
// Recurse.
TG.spawn([=, &Comp, &TG] {
parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1);
});
parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1);
}
template <class RandomAccessIterator, class Comparator>
void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp) {
TaskGroup TG;
parallel_quick_sort(Start, End, Comp, TG,
llvm::Log2_64(std::distance(Start, End)) + 1);
}
template <class IterTy, class FuncTy>
void parallel_for_each(IterTy Begin, IterTy End, FuncTy Fn) {
// TaskGroup has a relatively high overhead, so we want to reduce
// the number of spawn() calls. We'll create up to 1024 tasks here.
// (Note that 1024 is an arbitrary number. This code probably needs
// improving to take the number of available cores into account.)
ptrdiff_t TaskSize = std::distance(Begin, End) / 1024;
if (TaskSize == 0)
TaskSize = 1;
TaskGroup TG;
while (TaskSize < std::distance(Begin, End)) {
TG.spawn([=, &Fn] { std::for_each(Begin, Begin + TaskSize, Fn); });
Begin += TaskSize;
}
std::for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void parallel_for_each_n(IndexTy Begin, IndexTy End, FuncTy Fn) {
ptrdiff_t TaskSize = (End - Begin) / 1024;
if (TaskSize == 0)
TaskSize = 1;
TaskGroup TG;
IndexTy I = Begin;
for (; I + TaskSize < End; I += TaskSize) {
TG.spawn([=, &Fn] {
for (IndexTy J = I, E = I + TaskSize; J != E; ++J)
Fn(J);
});
}
for (IndexTy J = I; J < End; ++J)
Fn(J);
}
#endif
#endif
template <typename Iter>
using DefComparator =
std::less<typename std::iterator_traits<Iter>::value_type>;
} // namespace detail
// sequential algorithm implementations.
template <class Policy, class RandomAccessIterator,
class Comparator = detail::DefComparator<RandomAccessIterator>>
void sort(Policy policy, RandomAccessIterator Start, RandomAccessIterator End,
const Comparator &Comp = Comparator()) {
static_assert(is_execution_policy<Policy>::value,
"Invalid execution policy!");
llvm::sort(Start, End, Comp);
}
template <class Policy, class IterTy, class FuncTy>
void for_each(Policy policy, IterTy Begin, IterTy End, FuncTy Fn) {
static_assert(is_execution_policy<Policy>::value,
"Invalid execution policy!");
std::for_each(Begin, End, Fn);
}
template <class Policy, class IndexTy, class FuncTy>
void for_each_n(Policy policy, IndexTy Begin, IndexTy End, FuncTy Fn) {
static_assert(is_execution_policy<Policy>::value,
"Invalid execution policy!");
for (IndexTy I = Begin; I != End; ++I)
Fn(I);
}
// Parallel algorithm implementations, only available when LLVM_ENABLE_THREADS
// is true.
#if LLVM_ENABLE_THREADS
template <class RandomAccessIterator,
class Comparator = detail::DefComparator<RandomAccessIterator>>
void sort(parallel_execution_policy policy, RandomAccessIterator Start,
RandomAccessIterator End, const Comparator &Comp = Comparator()) {
detail::parallel_sort(Start, End, Comp);
}
template <class IterTy, class FuncTy>
void for_each(parallel_execution_policy policy, IterTy Begin, IterTy End,
FuncTy Fn) {
detail::parallel_for_each(Begin, End, Fn);
}
template <class IndexTy, class FuncTy>
void for_each_n(parallel_execution_policy policy, IndexTy Begin, IndexTy End,
FuncTy Fn) {
detail::parallel_for_each_n(Begin, End, Fn);
}
#endif
} // namespace parallel
} // namespace llvm
#endif // LLVM_SUPPORT_PARALLEL_H
|