1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
//===- llvm/Support/ScaledNumber.h - Support for scaled numbers -*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains functions (and a class) useful for working with scaled
// numbers -- in particular, pairs of integers where one represents digits and
// another represents a scale. The functions are helpers and live in the
// namespace ScaledNumbers. The class ScaledNumber is useful for modelling
// certain cost metrics that need simple, integer-like semantics that are easy
// to reason about.
//
// These might remind you of soft-floats. If you want one of those, you're in
// the wrong place. Look at include/llvm/ADT/APFloat.h instead.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_SCALEDNUMBER_H
#define LLVM_SUPPORT_SCALEDNUMBER_H
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <string>
#include <tuple>
#include <utility>
namespace llvm {
namespace ScaledNumbers {
/// Maximum scale; same as APFloat for easy debug printing.
const int32_t MaxScale = 16383;
/// Maximum scale; same as APFloat for easy debug printing.
const int32_t MinScale = -16382;
/// Get the width of a number.
template <class DigitsT> inline int getWidth() { return sizeof(DigitsT) * 8; }
/// Conditionally round up a scaled number.
///
/// Given \c Digits and \c Scale, round up iff \c ShouldRound is \c true.
/// Always returns \c Scale unless there's an overflow, in which case it
/// returns \c 1+Scale.
///
/// \pre adding 1 to \c Scale will not overflow INT16_MAX.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getRounded(DigitsT Digits, int16_t Scale,
bool ShouldRound) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (ShouldRound)
if (!++Digits)
// Overflow.
return std::make_pair(DigitsT(1) << (getWidth<DigitsT>() - 1), Scale + 1);
return std::make_pair(Digits, Scale);
}
/// Convenience helper for 32-bit rounding.
inline std::pair<uint32_t, int16_t> getRounded32(uint32_t Digits, int16_t Scale,
bool ShouldRound) {
return getRounded(Digits, Scale, ShouldRound);
}
/// Convenience helper for 64-bit rounding.
inline std::pair<uint64_t, int16_t> getRounded64(uint64_t Digits, int16_t Scale,
bool ShouldRound) {
return getRounded(Digits, Scale, ShouldRound);
}
/// Adjust a 64-bit scaled number down to the appropriate width.
///
/// \pre Adding 64 to \c Scale will not overflow INT16_MAX.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getAdjusted(uint64_t Digits,
int16_t Scale = 0) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
const int Width = getWidth<DigitsT>();
if (Width == 64 || Digits <= std::numeric_limits<DigitsT>::max())
return std::make_pair(Digits, Scale);
// Shift right and round.
int Shift = 64 - Width - countLeadingZeros(Digits);
return getRounded<DigitsT>(Digits >> Shift, Scale + Shift,
Digits & (UINT64_C(1) << (Shift - 1)));
}
/// Convenience helper for adjusting to 32 bits.
inline std::pair<uint32_t, int16_t> getAdjusted32(uint64_t Digits,
int16_t Scale = 0) {
return getAdjusted<uint32_t>(Digits, Scale);
}
/// Convenience helper for adjusting to 64 bits.
inline std::pair<uint64_t, int16_t> getAdjusted64(uint64_t Digits,
int16_t Scale = 0) {
return getAdjusted<uint64_t>(Digits, Scale);
}
/// Multiply two 64-bit integers to create a 64-bit scaled number.
///
/// Implemented with four 64-bit integer multiplies.
std::pair<uint64_t, int16_t> multiply64(uint64_t LHS, uint64_t RHS);
/// Multiply two 32-bit integers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer multiply.
template <class DigitsT>
inline std::pair<DigitsT, int16_t> getProduct(DigitsT LHS, DigitsT RHS) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (getWidth<DigitsT>() <= 32 || (LHS <= UINT32_MAX && RHS <= UINT32_MAX))
return getAdjusted<DigitsT>(uint64_t(LHS) * RHS);
return multiply64(LHS, RHS);
}
/// Convenience helper for 32-bit product.
inline std::pair<uint32_t, int16_t> getProduct32(uint32_t LHS, uint32_t RHS) {
return getProduct(LHS, RHS);
}
/// Convenience helper for 64-bit product.
inline std::pair<uint64_t, int16_t> getProduct64(uint64_t LHS, uint64_t RHS) {
return getProduct(LHS, RHS);
}
/// Divide two 64-bit integers to create a 64-bit scaled number.
///
/// Implemented with long division.
///
/// \pre \c Dividend and \c Divisor are non-zero.
std::pair<uint64_t, int16_t> divide64(uint64_t Dividend, uint64_t Divisor);
/// Divide two 32-bit integers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer divide/remainder pair.
///
/// \pre \c Dividend and \c Divisor are non-zero.
std::pair<uint32_t, int16_t> divide32(uint32_t Dividend, uint32_t Divisor);
/// Divide two 32-bit numbers to create a 32-bit scaled number.
///
/// Implemented with one 64-bit integer divide/remainder pair.
///
/// Returns \c (DigitsT_MAX, MaxScale) for divide-by-zero (0 for 0/0).
template <class DigitsT>
std::pair<DigitsT, int16_t> getQuotient(DigitsT Dividend, DigitsT Divisor) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
static_assert(sizeof(DigitsT) == 4 || sizeof(DigitsT) == 8,
"expected 32-bit or 64-bit digits");
// Check for zero.
if (!Dividend)
return std::make_pair(0, 0);
if (!Divisor)
return std::make_pair(std::numeric_limits<DigitsT>::max(), MaxScale);
if (getWidth<DigitsT>() == 64)
return divide64(Dividend, Divisor);
return divide32(Dividend, Divisor);
}
/// Convenience helper for 32-bit quotient.
inline std::pair<uint32_t, int16_t> getQuotient32(uint32_t Dividend,
uint32_t Divisor) {
return getQuotient(Dividend, Divisor);
}
/// Convenience helper for 64-bit quotient.
inline std::pair<uint64_t, int16_t> getQuotient64(uint64_t Dividend,
uint64_t Divisor) {
return getQuotient(Dividend, Divisor);
}
/// Implementation of getLg() and friends.
///
/// Returns the rounded lg of \c Digits*2^Scale and an int specifying whether
/// this was rounded up (1), down (-1), or exact (0).
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT>
inline std::pair<int32_t, int> getLgImpl(DigitsT Digits, int16_t Scale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (!Digits)
return std::make_pair(INT32_MIN, 0);
// Get the floor of the lg of Digits.
int32_t LocalFloor = sizeof(Digits) * 8 - countLeadingZeros(Digits) - 1;
// Get the actual floor.
int32_t Floor = Scale + LocalFloor;
if (Digits == UINT64_C(1) << LocalFloor)
return std::make_pair(Floor, 0);
// Round based on the next digit.
assert(LocalFloor >= 1);
bool Round = Digits & UINT64_C(1) << (LocalFloor - 1);
return std::make_pair(Floor + Round, Round ? 1 : -1);
}
/// Get the lg (rounded) of a scaled number.
///
/// Get the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLg(DigitsT Digits, int16_t Scale) {
return getLgImpl(Digits, Scale).first;
}
/// Get the lg floor of a scaled number.
///
/// Get the floor of the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLgFloor(DigitsT Digits, int16_t Scale) {
auto Lg = getLgImpl(Digits, Scale);
return Lg.first - (Lg.second > 0);
}
/// Get the lg ceiling of a scaled number.
///
/// Get the ceiling of the lg of \c Digits*2^Scale.
///
/// Returns \c INT32_MIN when \c Digits is zero.
template <class DigitsT> int32_t getLgCeiling(DigitsT Digits, int16_t Scale) {
auto Lg = getLgImpl(Digits, Scale);
return Lg.first + (Lg.second < 0);
}
/// Implementation for comparing scaled numbers.
///
/// Compare two 64-bit numbers with different scales. Given that the scale of
/// \c L is higher than that of \c R by \c ScaleDiff, compare them. Return -1,
/// 1, and 0 for less than, greater than, and equal, respectively.
///
/// \pre 0 <= ScaleDiff < 64.
int compareImpl(uint64_t L, uint64_t R, int ScaleDiff);
/// Compare two scaled numbers.
///
/// Compare two scaled numbers. Returns 0 for equal, -1 for less than, and 1
/// for greater than.
template <class DigitsT>
int compare(DigitsT LDigits, int16_t LScale, DigitsT RDigits, int16_t RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
// Check for zero.
if (!LDigits)
return RDigits ? -1 : 0;
if (!RDigits)
return 1;
// Check for the scale. Use getLgFloor to be sure that the scale difference
// is always lower than 64.
int32_t lgL = getLgFloor(LDigits, LScale), lgR = getLgFloor(RDigits, RScale);
if (lgL != lgR)
return lgL < lgR ? -1 : 1;
// Compare digits.
if (LScale < RScale)
return compareImpl(LDigits, RDigits, RScale - LScale);
return -compareImpl(RDigits, LDigits, LScale - RScale);
}
/// Match scales of two numbers.
///
/// Given two scaled numbers, match up their scales. Change the digits and
/// scales in place. Shift the digits as necessary to form equivalent numbers,
/// losing precision only when necessary.
///
/// If the output value of \c LDigits (\c RDigits) is \c 0, the output value of
/// \c LScale (\c RScale) is unspecified.
///
/// As a convenience, returns the matching scale. If the output value of one
/// number is zero, returns the scale of the other. If both are zero, which
/// scale is returned is unspecified.
template <class DigitsT>
int16_t matchScales(DigitsT &LDigits, int16_t &LScale, DigitsT &RDigits,
int16_t &RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
if (LScale < RScale)
// Swap arguments.
return matchScales(RDigits, RScale, LDigits, LScale);
if (!LDigits)
return RScale;
if (!RDigits || LScale == RScale)
return LScale;
// Now LScale > RScale. Get the difference.
int32_t ScaleDiff = int32_t(LScale) - RScale;
if (ScaleDiff >= 2 * getWidth<DigitsT>()) {
// Don't bother shifting. RDigits will get zero-ed out anyway.
RDigits = 0;
return LScale;
}
// Shift LDigits left as much as possible, then shift RDigits right.
int32_t ShiftL = std::min<int32_t>(countLeadingZeros(LDigits), ScaleDiff);
assert(ShiftL < getWidth<DigitsT>() && "can't shift more than width");
int32_t ShiftR = ScaleDiff - ShiftL;
if (ShiftR >= getWidth<DigitsT>()) {
// Don't bother shifting. RDigits will get zero-ed out anyway.
RDigits = 0;
return LScale;
}
LDigits <<= ShiftL;
RDigits >>= ShiftR;
LScale -= ShiftL;
RScale += ShiftR;
assert(LScale == RScale && "scales should match");
return LScale;
}
/// Get the sum of two scaled numbers.
///
/// Get the sum of two scaled numbers with as much precision as possible.
///
/// \pre Adding 1 to \c LScale (or \c RScale) will not overflow INT16_MAX.
template <class DigitsT>
std::pair<DigitsT, int16_t> getSum(DigitsT LDigits, int16_t LScale,
DigitsT RDigits, int16_t RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
// Check inputs up front. This is only relevant if addition overflows, but
// testing here should catch more bugs.
assert(LScale < INT16_MAX && "scale too large");
assert(RScale < INT16_MAX && "scale too large");
// Normalize digits to match scales.
int16_t Scale = matchScales(LDigits, LScale, RDigits, RScale);
// Compute sum.
DigitsT Sum = LDigits + RDigits;
if (Sum >= RDigits)
return std::make_pair(Sum, Scale);
// Adjust sum after arithmetic overflow.
DigitsT HighBit = DigitsT(1) << (getWidth<DigitsT>() - 1);
return std::make_pair(HighBit | Sum >> 1, Scale + 1);
}
/// Convenience helper for 32-bit sum.
inline std::pair<uint32_t, int16_t> getSum32(uint32_t LDigits, int16_t LScale,
uint32_t RDigits, int16_t RScale) {
return getSum(LDigits, LScale, RDigits, RScale);
}
/// Convenience helper for 64-bit sum.
inline std::pair<uint64_t, int16_t> getSum64(uint64_t LDigits, int16_t LScale,
uint64_t RDigits, int16_t RScale) {
return getSum(LDigits, LScale, RDigits, RScale);
}
/// Get the difference of two scaled numbers.
///
/// Get LHS minus RHS with as much precision as possible.
///
/// Returns \c (0, 0) if the RHS is larger than the LHS.
template <class DigitsT>
std::pair<DigitsT, int16_t> getDifference(DigitsT LDigits, int16_t LScale,
DigitsT RDigits, int16_t RScale) {
static_assert(!std::numeric_limits<DigitsT>::is_signed, "expected unsigned");
// Normalize digits to match scales.
const DigitsT SavedRDigits = RDigits;
const int16_t SavedRScale = RScale;
matchScales(LDigits, LScale, RDigits, RScale);
// Compute difference.
if (LDigits <= RDigits)
return std::make_pair(0, 0);
if (RDigits || !SavedRDigits)
return std::make_pair(LDigits - RDigits, LScale);
// Check if RDigits just barely lost its last bit. E.g., for 32-bit:
//
// 1*2^32 - 1*2^0 == 0xffffffff != 1*2^32
const auto RLgFloor = getLgFloor(SavedRDigits, SavedRScale);
if (!compare(LDigits, LScale, DigitsT(1), RLgFloor + getWidth<DigitsT>()))
return std::make_pair(std::numeric_limits<DigitsT>::max(), RLgFloor);
return std::make_pair(LDigits, LScale);
}
/// Convenience helper for 32-bit difference.
inline std::pair<uint32_t, int16_t> getDifference32(uint32_t LDigits,
int16_t LScale,
uint32_t RDigits,
int16_t RScale) {
return getDifference(LDigits, LScale, RDigits, RScale);
}
/// Convenience helper for 64-bit difference.
inline std::pair<uint64_t, int16_t> getDifference64(uint64_t LDigits,
int16_t LScale,
uint64_t RDigits,
int16_t RScale) {
return getDifference(LDigits, LScale, RDigits, RScale);
}
} // end namespace ScaledNumbers
} // end namespace llvm
namespace llvm {
class raw_ostream;
class ScaledNumberBase {
public:
static const int DefaultPrecision = 10;
static void dump(uint64_t D, int16_t E, int Width);
static raw_ostream &print(raw_ostream &OS, uint64_t D, int16_t E, int Width,
unsigned Precision);
static std::string toString(uint64_t D, int16_t E, int Width,
unsigned Precision);
static int countLeadingZeros32(uint32_t N) { return countLeadingZeros(N); }
static int countLeadingZeros64(uint64_t N) { return countLeadingZeros(N); }
static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); }
static std::pair<uint64_t, bool> splitSigned(int64_t N) {
if (N >= 0)
return std::make_pair(N, false);
uint64_t Unsigned = N == INT64_MIN ? UINT64_C(1) << 63 : uint64_t(-N);
return std::make_pair(Unsigned, true);
}
static int64_t joinSigned(uint64_t U, bool IsNeg) {
if (U > uint64_t(INT64_MAX))
return IsNeg ? INT64_MIN : INT64_MAX;
return IsNeg ? -int64_t(U) : int64_t(U);
}
};
/// Simple representation of a scaled number.
///
/// ScaledNumber is a number represented by digits and a scale. It uses simple
/// saturation arithmetic and every operation is well-defined for every value.
/// It's somewhat similar in behaviour to a soft-float, but is *not* a
/// replacement for one. If you're doing numerics, look at \a APFloat instead.
/// Nevertheless, we've found these semantics useful for modelling certain cost
/// metrics.
///
/// The number is split into a signed scale and unsigned digits. The number
/// represented is \c getDigits()*2^getScale(). In this way, the digits are
/// much like the mantissa in the x87 long double, but there is no canonical
/// form so the same number can be represented by many bit representations.
///
/// ScaledNumber is templated on the underlying integer type for digits, which
/// is expected to be unsigned.
///
/// Unlike APFloat, ScaledNumber does not model architecture floating point
/// behaviour -- while this might make it a little faster and easier to reason
/// about, it certainly makes it more dangerous for general numerics.
///
/// ScaledNumber is totally ordered. However, there is no canonical form, so
/// there are multiple representations of most scalars. E.g.:
///
/// ScaledNumber(8u, 0) == ScaledNumber(4u, 1)
/// ScaledNumber(4u, 1) == ScaledNumber(2u, 2)
/// ScaledNumber(2u, 2) == ScaledNumber(1u, 3)
///
/// ScaledNumber implements most arithmetic operations. Precision is kept
/// where possible. Uses simple saturation arithmetic, so that operations
/// saturate to 0.0 or getLargest() rather than under or overflowing. It has
/// some extra arithmetic for unit inversion. 0.0/0.0 is defined to be 0.0.
/// Any other division by 0.0 is defined to be getLargest().
///
/// As a convenience for modifying the exponent, left and right shifting are
/// both implemented, and both interpret negative shifts as positive shifts in
/// the opposite direction.
///
/// Scales are limited to the range accepted by x87 long double. This makes
/// it trivial to add functionality to convert to APFloat (this is already
/// relied on for the implementation of printing).
///
/// Possible (and conflicting) future directions:
///
/// 1. Turn this into a wrapper around \a APFloat.
/// 2. Share the algorithm implementations with \a APFloat.
/// 3. Allow \a ScaledNumber to represent a signed number.
template <class DigitsT> class ScaledNumber : ScaledNumberBase {
public:
static_assert(!std::numeric_limits<DigitsT>::is_signed,
"only unsigned floats supported");
typedef DigitsT DigitsType;
private:
typedef std::numeric_limits<DigitsType> DigitsLimits;
static const int Width = sizeof(DigitsType) * 8;
static_assert(Width <= 64, "invalid integer width for digits");
private:
DigitsType Digits = 0;
int16_t Scale = 0;
public:
ScaledNumber() = default;
constexpr ScaledNumber(DigitsType Digits, int16_t Scale)
: Digits(Digits), Scale(Scale) {}
private:
ScaledNumber(const std::pair<DigitsT, int16_t> &X)
: Digits(X.first), Scale(X.second) {}
public:
static ScaledNumber getZero() { return ScaledNumber(0, 0); }
static ScaledNumber getOne() { return ScaledNumber(1, 0); }
static ScaledNumber getLargest() {
return ScaledNumber(DigitsLimits::max(), ScaledNumbers::MaxScale);
}
static ScaledNumber get(uint64_t N) { return adjustToWidth(N, 0); }
static ScaledNumber getInverse(uint64_t N) {
return get(N).invert();
}
static ScaledNumber getFraction(DigitsType N, DigitsType D) {
return getQuotient(N, D);
}
int16_t getScale() const { return Scale; }
DigitsType getDigits() const { return Digits; }
/// Convert to the given integer type.
///
/// Convert to \c IntT using simple saturating arithmetic, truncating if
/// necessary.
template <class IntT> IntT toInt() const;
bool isZero() const { return !Digits; }
bool isLargest() const { return *this == getLargest(); }
bool isOne() const {
if (Scale > 0 || Scale <= -Width)
return false;
return Digits == DigitsType(1) << -Scale;
}
/// The log base 2, rounded.
///
/// Get the lg of the scalar. lg 0 is defined to be INT32_MIN.
int32_t lg() const { return ScaledNumbers::getLg(Digits, Scale); }
/// The log base 2, rounded towards INT32_MIN.
///
/// Get the lg floor. lg 0 is defined to be INT32_MIN.
int32_t lgFloor() const { return ScaledNumbers::getLgFloor(Digits, Scale); }
/// The log base 2, rounded towards INT32_MAX.
///
/// Get the lg ceiling. lg 0 is defined to be INT32_MIN.
int32_t lgCeiling() const {
return ScaledNumbers::getLgCeiling(Digits, Scale);
}
bool operator==(const ScaledNumber &X) const { return compare(X) == 0; }
bool operator<(const ScaledNumber &X) const { return compare(X) < 0; }
bool operator!=(const ScaledNumber &X) const { return compare(X) != 0; }
bool operator>(const ScaledNumber &X) const { return compare(X) > 0; }
bool operator<=(const ScaledNumber &X) const { return compare(X) <= 0; }
bool operator>=(const ScaledNumber &X) const { return compare(X) >= 0; }
bool operator!() const { return isZero(); }
/// Convert to a decimal representation in a string.
///
/// Convert to a string. Uses scientific notation for very large/small
/// numbers. Scientific notation is used roughly for numbers outside of the
/// range 2^-64 through 2^64.
///
/// \c Precision indicates the number of decimal digits of precision to use;
/// 0 requests the maximum available.
///
/// As a special case to make debugging easier, if the number is small enough
/// to convert without scientific notation and has more than \c Precision
/// digits before the decimal place, it's printed accurately to the first
/// digit past zero. E.g., assuming 10 digits of precision:
///
/// 98765432198.7654... => 98765432198.8
/// 8765432198.7654... => 8765432198.8
/// 765432198.7654... => 765432198.8
/// 65432198.7654... => 65432198.77
/// 5432198.7654... => 5432198.765
std::string toString(unsigned Precision = DefaultPrecision) {
return ScaledNumberBase::toString(Digits, Scale, Width, Precision);
}
/// Print a decimal representation.
///
/// Print a string. See toString for documentation.
raw_ostream &print(raw_ostream &OS,
unsigned Precision = DefaultPrecision) const {
return ScaledNumberBase::print(OS, Digits, Scale, Width, Precision);
}
void dump() const { return ScaledNumberBase::dump(Digits, Scale, Width); }
ScaledNumber &operator+=(const ScaledNumber &X) {
std::tie(Digits, Scale) =
ScaledNumbers::getSum(Digits, Scale, X.Digits, X.Scale);
// Check for exponent past MaxScale.
if (Scale > ScaledNumbers::MaxScale)
*this = getLargest();
return *this;
}
ScaledNumber &operator-=(const ScaledNumber &X) {
std::tie(Digits, Scale) =
ScaledNumbers::getDifference(Digits, Scale, X.Digits, X.Scale);
return *this;
}
ScaledNumber &operator*=(const ScaledNumber &X);
ScaledNumber &operator/=(const ScaledNumber &X);
ScaledNumber &operator<<=(int16_t Shift) {
shiftLeft(Shift);
return *this;
}
ScaledNumber &operator>>=(int16_t Shift) {
shiftRight(Shift);
return *this;
}
private:
void shiftLeft(int32_t Shift);
void shiftRight(int32_t Shift);
/// Adjust two floats to have matching exponents.
///
/// Adjust \c this and \c X to have matching exponents. Returns the new \c X
/// by value. Does nothing if \a isZero() for either.
///
/// The value that compares smaller will lose precision, and possibly become
/// \a isZero().
ScaledNumber matchScales(ScaledNumber X) {
ScaledNumbers::matchScales(Digits, Scale, X.Digits, X.Scale);
return X;
}
public:
/// Scale a large number accurately.
///
/// Scale N (multiply it by this). Uses full precision multiplication, even
/// if Width is smaller than 64, so information is not lost.
uint64_t scale(uint64_t N) const;
uint64_t scaleByInverse(uint64_t N) const {
// TODO: implement directly, rather than relying on inverse. Inverse is
// expensive.
return inverse().scale(N);
}
int64_t scale(int64_t N) const {
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
return joinSigned(scale(Unsigned.first), Unsigned.second);
}
int64_t scaleByInverse(int64_t N) const {
std::pair<uint64_t, bool> Unsigned = splitSigned(N);
return joinSigned(scaleByInverse(Unsigned.first), Unsigned.second);
}
int compare(const ScaledNumber &X) const {
return ScaledNumbers::compare(Digits, Scale, X.Digits, X.Scale);
}
int compareTo(uint64_t N) const {
return ScaledNumbers::compare<uint64_t>(Digits, Scale, N, 0);
}
int compareTo(int64_t N) const { return N < 0 ? 1 : compareTo(uint64_t(N)); }
ScaledNumber &invert() { return *this = ScaledNumber::get(1) / *this; }
ScaledNumber inverse() const { return ScaledNumber(*this).invert(); }
private:
static ScaledNumber getProduct(DigitsType LHS, DigitsType RHS) {
return ScaledNumbers::getProduct(LHS, RHS);
}
static ScaledNumber getQuotient(DigitsType Dividend, DigitsType Divisor) {
return ScaledNumbers::getQuotient(Dividend, Divisor);
}
static int countLeadingZerosWidth(DigitsType Digits) {
if (Width == 64)
return countLeadingZeros64(Digits);
if (Width == 32)
return countLeadingZeros32(Digits);
return countLeadingZeros32(Digits) + Width - 32;
}
/// Adjust a number to width, rounding up if necessary.
///
/// Should only be called for \c Shift close to zero.
///
/// \pre Shift >= MinScale && Shift + 64 <= MaxScale.
static ScaledNumber adjustToWidth(uint64_t N, int32_t Shift) {
assert(Shift >= ScaledNumbers::MinScale && "Shift should be close to 0");
assert(Shift <= ScaledNumbers::MaxScale - 64 &&
"Shift should be close to 0");
auto Adjusted = ScaledNumbers::getAdjusted<DigitsT>(N, Shift);
return Adjusted;
}
static ScaledNumber getRounded(ScaledNumber P, bool Round) {
// Saturate.
if (P.isLargest())
return P;
return ScaledNumbers::getRounded(P.Digits, P.Scale, Round);
}
};
#define SCALED_NUMBER_BOP(op, base) \
template <class DigitsT> \
ScaledNumber<DigitsT> operator op(const ScaledNumber<DigitsT> &L, \
const ScaledNumber<DigitsT> &R) { \
return ScaledNumber<DigitsT>(L) base R; \
}
SCALED_NUMBER_BOP(+, += )
SCALED_NUMBER_BOP(-, -= )
SCALED_NUMBER_BOP(*, *= )
SCALED_NUMBER_BOP(/, /= )
#undef SCALED_NUMBER_BOP
template <class DigitsT>
ScaledNumber<DigitsT> operator<<(const ScaledNumber<DigitsT> &L,
int16_t Shift) {
return ScaledNumber<DigitsT>(L) <<= Shift;
}
template <class DigitsT>
ScaledNumber<DigitsT> operator>>(const ScaledNumber<DigitsT> &L,
int16_t Shift) {
return ScaledNumber<DigitsT>(L) >>= Shift;
}
template <class DigitsT>
raw_ostream &operator<<(raw_ostream &OS, const ScaledNumber<DigitsT> &X) {
return X.print(OS, 10);
}
#define SCALED_NUMBER_COMPARE_TO_TYPE(op, T1, T2) \
template <class DigitsT> \
bool operator op(const ScaledNumber<DigitsT> &L, T1 R) { \
return L.compareTo(T2(R)) op 0; \
} \
template <class DigitsT> \
bool operator op(T1 L, const ScaledNumber<DigitsT> &R) { \
return 0 op R.compareTo(T2(L)); \
}
#define SCALED_NUMBER_COMPARE_TO(op) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, uint64_t, uint64_t) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, uint32_t, uint64_t) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, int64_t, int64_t) \
SCALED_NUMBER_COMPARE_TO_TYPE(op, int32_t, int64_t)
SCALED_NUMBER_COMPARE_TO(< )
SCALED_NUMBER_COMPARE_TO(> )
SCALED_NUMBER_COMPARE_TO(== )
SCALED_NUMBER_COMPARE_TO(!= )
SCALED_NUMBER_COMPARE_TO(<= )
SCALED_NUMBER_COMPARE_TO(>= )
#undef SCALED_NUMBER_COMPARE_TO
#undef SCALED_NUMBER_COMPARE_TO_TYPE
template <class DigitsT>
uint64_t ScaledNumber<DigitsT>::scale(uint64_t N) const {
if (Width == 64 || N <= DigitsLimits::max())
return (get(N) * *this).template toInt<uint64_t>();
// Defer to the 64-bit version.
return ScaledNumber<uint64_t>(Digits, Scale).scale(N);
}
template <class DigitsT>
template <class IntT>
IntT ScaledNumber<DigitsT>::toInt() const {
typedef std::numeric_limits<IntT> Limits;
if (*this < 1)
return 0;
if (*this >= Limits::max())
return Limits::max();
IntT N = Digits;
if (Scale > 0) {
assert(size_t(Scale) < sizeof(IntT) * 8);
return N << Scale;
}
if (Scale < 0) {
assert(size_t(-Scale) < sizeof(IntT) * 8);
return N >> -Scale;
}
return N;
}
template <class DigitsT>
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
operator*=(const ScaledNumber &X) {
if (isZero())
return *this;
if (X.isZero())
return *this = X;
// Save the exponents.
int32_t Scales = int32_t(Scale) + int32_t(X.Scale);
// Get the raw product.
*this = getProduct(Digits, X.Digits);
// Combine with exponents.
return *this <<= Scales;
}
template <class DigitsT>
ScaledNumber<DigitsT> &ScaledNumber<DigitsT>::
operator/=(const ScaledNumber &X) {
if (isZero())
return *this;
if (X.isZero())
return *this = getLargest();
// Save the exponents.
int32_t Scales = int32_t(Scale) - int32_t(X.Scale);
// Get the raw quotient.
*this = getQuotient(Digits, X.Digits);
// Combine with exponents.
return *this <<= Scales;
}
template <class DigitsT> void ScaledNumber<DigitsT>::shiftLeft(int32_t Shift) {
if (!Shift || isZero())
return;
assert(Shift != INT32_MIN);
if (Shift < 0) {
shiftRight(-Shift);
return;
}
// Shift as much as we can in the exponent.
int32_t ScaleShift = std::min(Shift, ScaledNumbers::MaxScale - Scale);
Scale += ScaleShift;
if (ScaleShift == Shift)
return;
// Check this late, since it's rare.
if (isLargest())
return;
// Shift the digits themselves.
Shift -= ScaleShift;
if (Shift > countLeadingZerosWidth(Digits)) {
// Saturate.
*this = getLargest();
return;
}
Digits <<= Shift;
}
template <class DigitsT> void ScaledNumber<DigitsT>::shiftRight(int32_t Shift) {
if (!Shift || isZero())
return;
assert(Shift != INT32_MIN);
if (Shift < 0) {
shiftLeft(-Shift);
return;
}
// Shift as much as we can in the exponent.
int32_t ScaleShift = std::min(Shift, Scale - ScaledNumbers::MinScale);
Scale -= ScaleShift;
if (ScaleShift == Shift)
return;
// Shift the digits themselves.
Shift -= ScaleShift;
if (Shift >= Width) {
// Saturate.
*this = getZero();
return;
}
Digits >>= Shift;
}
template <typename T> struct isPodLike;
template <typename T> struct isPodLike<ScaledNumber<T>> {
static const bool value = true;
};
} // end namespace llvm
#endif // LLVM_SUPPORT_SCALEDNUMBER_H
|