1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
//===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates n-ary add expressions and eliminates the redundancy
// exposed by the reassociation.
//
// A motivating example:
//
// void foo(int a, int b) {
// bar(a + b);
// bar((a + 2) + b);
// }
//
// An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
// the above code to
//
// int t = a + b;
// bar(t);
// bar(t + 2);
//
// However, the Reassociate pass is unable to do that because it processes each
// instruction individually and believes (a + 2) + b is the best form according
// to its rank system.
//
// To address this limitation, NaryReassociate reassociates an expression in a
// form that reuses existing instructions. As a result, NaryReassociate can
// reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
// (a + b) is computed before.
//
// NaryReassociate works as follows. For every instruction in the form of (a +
// b) + c, it checks whether a + c or b + c is already computed by a dominating
// instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
// c) + a and removes the redundancy accordingly. To efficiently look up whether
// an expression is computed before, we store each instruction seen and its SCEV
// into an SCEV-to-instruction map.
//
// Although the algorithm pattern-matches only ternary additions, it
// automatically handles many >3-ary expressions by walking through the function
// in the depth-first order. For example, given
//
// (a + c) + d
// ((a + b) + c) + d
//
// NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
// ((a + c) + b) + d into ((a + c) + d) + b.
//
// Finally, the above dominator-based algorithm may need to be run multiple
// iterations before emitting optimal code. One source of this need is that we
// only split an operand when it is used only once. The above algorithm can
// eliminate an instruction and decrease the usage count of its operands. As a
// result, an instruction that previously had multiple uses may become a
// single-use instruction and thus eligible for split consideration. For
// example,
//
// ac = a + c
// ab = a + b
// abc = ab + c
// ab2 = ab + b
// ab2c = ab2 + c
//
// In the first iteration, we cannot reassociate abc to ac+b because ab is used
// twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
// result, ab2 becomes dead and ab will be used only once in the second
// iteration.
//
// Limitations and TODO items:
//
// 1) We only considers n-ary adds and muls for now. This should be extended
// and generalized.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
#define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
namespace llvm {
class AssumptionCache;
class BinaryOperator;
class DataLayout;
class DominatorTree;
class Function;
class GetElementPtrInst;
class Instruction;
class ScalarEvolution;
class SCEV;
class TargetLibraryInfo;
class TargetTransformInfo;
class Type;
class Value;
class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> {
public:
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
// Glue for old PM.
bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_,
ScalarEvolution *SE_, TargetLibraryInfo *TLI_,
TargetTransformInfo *TTI_);
private:
// Runs only one iteration of the dominator-based algorithm. See the header
// comments for why we need multiple iterations.
bool doOneIteration(Function &F);
// Reassociates I for better CSE.
Instruction *tryReassociate(Instruction *I);
// Reassociate GEP for better CSE.
Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
// Try splitting GEP at the I-th index and see whether either part can be
// CSE'ed. This is a helper function for tryReassociateGEP.
//
// \p IndexedType The element type indexed by GEP's I-th index. This is
// equivalent to
// GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
// ..., i-th index).
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
unsigned I, Type *IndexedType);
// Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
// &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
unsigned I, Value *LHS,
Value *RHS, Type *IndexedType);
// Reassociate binary operators for better CSE.
Instruction *tryReassociateBinaryOp(BinaryOperator *I);
// A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
// passed.
Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
BinaryOperator *I);
// Rewrites I to (LHS op RHS) if LHS is computed already.
Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
BinaryOperator *I);
// Tries to match Op1 and Op2 by using V.
bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
// Gets SCEV for (LHS op RHS).
const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
const SCEV *RHS);
// Returns the closest dominator of \c Dominatee that computes
// \c CandidateExpr. Returns null if not found.
Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
Instruction *Dominatee);
// GetElementPtrInst implicitly sign-extends an index if the index is shorter
// than the pointer size. This function returns whether Index is shorter than
// GEP's pointer size, i.e., whether Index needs to be sign-extended in order
// to be an index of GEP.
bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
AssumptionCache *AC;
const DataLayout *DL;
DominatorTree *DT;
ScalarEvolution *SE;
TargetLibraryInfo *TLI;
TargetTransformInfo *TTI;
// A lookup table quickly telling which instructions compute the given SCEV.
// Note that there can be multiple instructions at different locations
// computing to the same SCEV, so we map a SCEV to an instruction list. For
// example,
//
// if (p1)
// foo(a + b);
// if (p2)
// bar(a + b);
DenseMap<const SCEV *, SmallVector<WeakTrackingVH, 2>> SeenExprs;
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
|