1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
//===- PredicateInfo.h - Build PredicateInfo ----------------------*-C++-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the PredicateInfo analysis, which creates an Extended
/// SSA form for operations used in branch comparisons and llvm.assume
/// comparisons.
///
/// Copies of these operations are inserted into the true/false edge (and after
/// assumes), and information attached to the copies. All uses of the original
/// operation in blocks dominated by the true/false edge (and assume), are
/// replaced with uses of the copies. This enables passes to easily and sparsely
/// propagate condition based info into the operations that may be affected.
///
/// Example:
/// %cmp = icmp eq i32 %x, 50
/// br i1 %cmp, label %true, label %false
/// true:
/// ret i32 %x
/// false:
/// ret i32 1
///
/// will become
///
/// %cmp = icmp eq i32, %x, 50
/// br i1 %cmp, label %true, label %false
/// true:
/// %x.0 = call \@llvm.ssa_copy.i32(i32 %x)
/// ret i32 %x.0
/// false:
/// ret i32 1
///
/// Using getPredicateInfoFor on x.0 will give you the comparison it is
/// dominated by (the icmp), and that you are located in the true edge of that
/// comparison, which tells you x.0 is 50.
///
/// In order to reduce the number of copies inserted, predicateinfo is only
/// inserted where it would actually be live. This means if there are no uses of
/// an operation dominated by the branch edges, or by an assume, the associated
/// predicate info is never inserted.
///
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_PREDICATEINFO_H
#define LLVM_TRANSFORMS_UTILS_PREDICATEINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/OrderedInstructions.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <memory>
#include <utility>
namespace llvm {
class DominatorTree;
class Function;
class Instruction;
class MemoryAccess;
class LLVMContext;
class raw_ostream;
enum PredicateType { PT_Branch, PT_Assume, PT_Switch };
// Base class for all predicate information we provide.
// All of our predicate information has at least a comparison.
class PredicateBase : public ilist_node<PredicateBase> {
public:
PredicateType Type;
// The original operand before we renamed it.
// This can be use by passes, when destroying predicateinfo, to know
// whether they can just drop the intrinsic, or have to merge metadata.
Value *OriginalOp;
PredicateBase(const PredicateBase &) = delete;
PredicateBase &operator=(const PredicateBase &) = delete;
PredicateBase() = delete;
virtual ~PredicateBase() = default;
protected:
PredicateBase(PredicateType PT, Value *Op) : Type(PT), OriginalOp(Op) {}
};
class PredicateWithCondition : public PredicateBase {
public:
Value *Condition;
static bool classof(const PredicateBase *PB) {
return PB->Type == PT_Assume || PB->Type == PT_Branch ||
PB->Type == PT_Switch;
}
protected:
PredicateWithCondition(PredicateType PT, Value *Op, Value *Condition)
: PredicateBase(PT, Op), Condition(Condition) {}
};
// Provides predicate information for assumes. Since assumes are always true,
// we simply provide the assume instruction, so you can tell your relative
// position to it.
class PredicateAssume : public PredicateWithCondition {
public:
IntrinsicInst *AssumeInst;
PredicateAssume(Value *Op, IntrinsicInst *AssumeInst, Value *Condition)
: PredicateWithCondition(PT_Assume, Op, Condition),
AssumeInst(AssumeInst) {}
PredicateAssume() = delete;
static bool classof(const PredicateBase *PB) {
return PB->Type == PT_Assume;
}
};
// Mixin class for edge predicates. The FROM block is the block where the
// predicate originates, and the TO block is the block where the predicate is
// valid.
class PredicateWithEdge : public PredicateWithCondition {
public:
BasicBlock *From;
BasicBlock *To;
PredicateWithEdge() = delete;
static bool classof(const PredicateBase *PB) {
return PB->Type == PT_Branch || PB->Type == PT_Switch;
}
protected:
PredicateWithEdge(PredicateType PType, Value *Op, BasicBlock *From,
BasicBlock *To, Value *Cond)
: PredicateWithCondition(PType, Op, Cond), From(From), To(To) {}
};
// Provides predicate information for branches.
class PredicateBranch : public PredicateWithEdge {
public:
// If true, SplitBB is the true successor, otherwise it's the false successor.
bool TrueEdge;
PredicateBranch(Value *Op, BasicBlock *BranchBB, BasicBlock *SplitBB,
Value *Condition, bool TakenEdge)
: PredicateWithEdge(PT_Branch, Op, BranchBB, SplitBB, Condition),
TrueEdge(TakenEdge) {}
PredicateBranch() = delete;
static bool classof(const PredicateBase *PB) {
return PB->Type == PT_Branch;
}
};
class PredicateSwitch : public PredicateWithEdge {
public:
Value *CaseValue;
// This is the switch instruction.
SwitchInst *Switch;
PredicateSwitch(Value *Op, BasicBlock *SwitchBB, BasicBlock *TargetBB,
Value *CaseValue, SwitchInst *SI)
: PredicateWithEdge(PT_Switch, Op, SwitchBB, TargetBB,
SI->getCondition()),
CaseValue(CaseValue), Switch(SI) {}
PredicateSwitch() = delete;
static bool classof(const PredicateBase *PB) {
return PB->Type == PT_Switch;
}
};
// This name is used in a few places, so kick it into their own namespace
namespace PredicateInfoClasses {
struct ValueDFS;
}
/// Encapsulates PredicateInfo, including all data associated with memory
/// accesses.
class PredicateInfo {
private:
// Used to store information about each value we might rename.
struct ValueInfo {
// Information about each possible copy. During processing, this is each
// inserted info. After processing, we move the uninserted ones to the
// uninserted vector.
SmallVector<PredicateBase *, 4> Infos;
SmallVector<PredicateBase *, 4> UninsertedInfos;
};
// This owns the all the predicate infos in the function, placed or not.
iplist<PredicateBase> AllInfos;
public:
PredicateInfo(Function &, DominatorTree &, AssumptionCache &);
~PredicateInfo();
void verifyPredicateInfo() const;
void dump() const;
void print(raw_ostream &) const;
const PredicateBase *getPredicateInfoFor(const Value *V) const {
return PredicateMap.lookup(V);
}
protected:
// Used by PredicateInfo annotater, dumpers, and wrapper pass.
friend class PredicateInfoAnnotatedWriter;
friend class PredicateInfoPrinterLegacyPass;
private:
void buildPredicateInfo();
void processAssume(IntrinsicInst *, BasicBlock *, SmallPtrSetImpl<Value *> &);
void processBranch(BranchInst *, BasicBlock *, SmallPtrSetImpl<Value *> &);
void processSwitch(SwitchInst *, BasicBlock *, SmallPtrSetImpl<Value *> &);
void renameUses(SmallPtrSetImpl<Value *> &);
using ValueDFS = PredicateInfoClasses::ValueDFS;
typedef SmallVectorImpl<ValueDFS> ValueDFSStack;
void convertUsesToDFSOrdered(Value *, SmallVectorImpl<ValueDFS> &);
Value *materializeStack(unsigned int &, ValueDFSStack &, Value *);
bool stackIsInScope(const ValueDFSStack &, const ValueDFS &) const;
void popStackUntilDFSScope(ValueDFSStack &, const ValueDFS &);
ValueInfo &getOrCreateValueInfo(Value *);
void addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
PredicateBase *PB);
const ValueInfo &getValueInfo(Value *) const;
Function &F;
DominatorTree &DT;
AssumptionCache &AC;
OrderedInstructions OI;
// This maps from copy operands to Predicate Info. Note that it does not own
// the Predicate Info, they belong to the ValueInfo structs in the ValueInfos
// vector.
DenseMap<const Value *, const PredicateBase *> PredicateMap;
// This stores info about each operand or comparison result we make copies
// of. The real ValueInfos start at index 1, index 0 is unused so that we can
// more easily detect invalid indexing.
SmallVector<ValueInfo, 32> ValueInfos;
// This gives the index into the ValueInfos array for a given Value. Because
// 0 is not a valid Value Info index, you can use DenseMap::lookup and tell
// whether it returned a valid result.
DenseMap<Value *, unsigned int> ValueInfoNums;
// The set of edges along which we can only handle phi uses, due to critical
// edges.
DenseSet<std::pair<BasicBlock *, BasicBlock *>> EdgeUsesOnly;
// The set of ssa_copy declarations we created with our custom mangling.
SmallSet<AssertingVH<Function>, 20> CreatedDeclarations;
};
// This pass does eager building and then printing of PredicateInfo. It is used
// by
// the tests to be able to build, dump, and verify PredicateInfo.
class PredicateInfoPrinterLegacyPass : public FunctionPass {
public:
PredicateInfoPrinterLegacyPass();
static char ID;
bool runOnFunction(Function &) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
/// Printer pass for \c PredicateInfo.
class PredicateInfoPrinterPass
: public PassInfoMixin<PredicateInfoPrinterPass> {
raw_ostream &OS;
public:
explicit PredicateInfoPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
/// Verifier pass for \c PredicateInfo.
struct PredicateInfoVerifierPass : PassInfoMixin<PredicateInfoVerifierPass> {
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_UTILS_PREDICATEINFO_H
|