1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
//===- AArch64MacroFusion.cpp - AArch64 Macro Fusion ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the AArch64 implementation of the DAG scheduling
/// mutation to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "AArch64Subtarget.h"
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
using namespace llvm;
namespace {
// Fuse CMN, CMP, TST followed by Bcc.
static bool isArithmeticBccPair(const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
if (SecondMI.getOpcode() == AArch64::Bcc) {
// Assume the 1st instr to be a wildcard if it is unspecified.
if (!FirstMI)
return true;
switch (FirstMI->getOpcode()) {
case AArch64::ADDSWri:
case AArch64::ADDSWrr:
case AArch64::ADDSXri:
case AArch64::ADDSXrr:
case AArch64::ANDSWri:
case AArch64::ANDSWrr:
case AArch64::ANDSXri:
case AArch64::ANDSXrr:
case AArch64::SUBSWri:
case AArch64::SUBSWrr:
case AArch64::SUBSXri:
case AArch64::SUBSXrr:
case AArch64::BICSWrr:
case AArch64::BICSXrr:
return true;
case AArch64::ADDSWrs:
case AArch64::ADDSXrs:
case AArch64::ANDSWrs:
case AArch64::ANDSXrs:
case AArch64::SUBSWrs:
case AArch64::SUBSXrs:
case AArch64::BICSWrs:
case AArch64::BICSXrs:
// Shift value can be 0 making these behave like the "rr" variant...
return (!AArch64InstrInfo::hasShiftedReg(*FirstMI));
}
}
return false;
}
// Fuse ALU operations followed by CBZ/CBNZ.
static bool isArithmeticCbzPair(const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
unsigned SecondOpcode = SecondMI.getOpcode();
if (SecondOpcode == AArch64::CBNZW || SecondOpcode == AArch64::CBNZX ||
SecondOpcode == AArch64::CBZW || SecondOpcode == AArch64::CBZX) {
// Assume the 1st instr to be a wildcard if it is unspecified.
if (!FirstMI)
return true;
switch (FirstMI->getOpcode()) {
case AArch64::ADDWri:
case AArch64::ADDWrr:
case AArch64::ADDXri:
case AArch64::ADDXrr:
case AArch64::ANDWri:
case AArch64::ANDWrr:
case AArch64::ANDXri:
case AArch64::ANDXrr:
case AArch64::EORWri:
case AArch64::EORWrr:
case AArch64::EORXri:
case AArch64::EORXrr:
case AArch64::ORRWri:
case AArch64::ORRWrr:
case AArch64::ORRXri:
case AArch64::ORRXrr:
case AArch64::SUBWri:
case AArch64::SUBWrr:
case AArch64::SUBXri:
case AArch64::SUBXrr:
return true;
case AArch64::ADDWrs:
case AArch64::ADDXrs:
case AArch64::ANDWrs:
case AArch64::ANDXrs:
case AArch64::SUBWrs:
case AArch64::SUBXrs:
case AArch64::BICWrs:
case AArch64::BICXrs:
// Shift value can be 0 making these behave like the "rr" variant...
return (!AArch64InstrInfo::hasShiftedReg(*FirstMI));
}
}
return false;
}
// Fuse AES crypto encoding or decoding.
static bool isAESPair(const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
// Assume the 1st instr to be a wildcard if it is unspecified.
unsigned FirstOpcode =
FirstMI ? FirstMI->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
unsigned SecondOpcode = SecondMI.getOpcode();
// AES encode.
if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
FirstOpcode == AArch64::AESErr) &&
(SecondOpcode == AArch64::AESMCrr ||
SecondOpcode == AArch64::AESMCrrTied))
return true;
// AES decode.
else if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
FirstOpcode == AArch64::AESDrr) &&
(SecondOpcode == AArch64::AESIMCrr ||
SecondOpcode == AArch64::AESIMCrrTied))
return true;
return false;
}
// Fuse literal generation.
static bool isLiteralsPair(const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
// Assume the 1st instr to be a wildcard if it is unspecified.
unsigned FirstOpcode =
FirstMI ? FirstMI->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
unsigned SecondOpcode = SecondMI.getOpcode();
// PC relative address.
if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
FirstOpcode == AArch64::ADRP) &&
SecondOpcode == AArch64::ADDXri)
return true;
// 32 bit immediate.
else if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
FirstOpcode == AArch64::MOVZWi) &&
(SecondOpcode == AArch64::MOVKWi &&
SecondMI.getOperand(3).getImm() == 16))
return true;
// Lower half of 64 bit immediate.
else if((FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
FirstOpcode == AArch64::MOVZXi) &&
(SecondOpcode == AArch64::MOVKXi &&
SecondMI.getOperand(3).getImm() == 16))
return true;
// Upper half of 64 bit immediate.
else if ((FirstOpcode == AArch64::INSTRUCTION_LIST_END ||
(FirstOpcode == AArch64::MOVKXi &&
FirstMI->getOperand(3).getImm() == 32)) &&
(SecondOpcode == AArch64::MOVKXi &&
SecondMI.getOperand(3).getImm() == 48))
return true;
return false;
}
// Fuse address generation and loads or stores.
static bool isAddressLdStPair(const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
unsigned SecondOpcode = SecondMI.getOpcode();
switch (SecondOpcode) {
case AArch64::STRBBui:
case AArch64::STRBui:
case AArch64::STRDui:
case AArch64::STRHHui:
case AArch64::STRHui:
case AArch64::STRQui:
case AArch64::STRSui:
case AArch64::STRWui:
case AArch64::STRXui:
case AArch64::LDRBBui:
case AArch64::LDRBui:
case AArch64::LDRDui:
case AArch64::LDRHHui:
case AArch64::LDRHui:
case AArch64::LDRQui:
case AArch64::LDRSui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSBWui:
case AArch64::LDRSBXui:
case AArch64::LDRSHWui:
case AArch64::LDRSHXui:
case AArch64::LDRSWui:
// Assume the 1st instr to be a wildcard if it is unspecified.
if (!FirstMI)
return true;
switch (FirstMI->getOpcode()) {
case AArch64::ADR:
return (SecondMI.getOperand(2).getImm() == 0);
case AArch64::ADRP:
return true;
}
}
return false;
}
// Fuse compare and conditional select.
static bool isCCSelectPair(const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
unsigned SecondOpcode = SecondMI.getOpcode();
// 32 bits
if (SecondOpcode == AArch64::CSELWr) {
// Assume the 1st instr to be a wildcard if it is unspecified.
if (!FirstMI)
return true;
if (FirstMI->definesRegister(AArch64::WZR))
switch (FirstMI->getOpcode()) {
case AArch64::SUBSWrs:
return (!AArch64InstrInfo::hasShiftedReg(*FirstMI));
case AArch64::SUBSWrx:
return (!AArch64InstrInfo::hasExtendedReg(*FirstMI));
case AArch64::SUBSWrr:
case AArch64::SUBSWri:
return true;
}
}
// 64 bits
else if (SecondOpcode == AArch64::CSELXr) {
// Assume the 1st instr to be a wildcard if it is unspecified.
if (!FirstMI)
return true;
if (FirstMI->definesRegister(AArch64::XZR))
switch (FirstMI->getOpcode()) {
case AArch64::SUBSXrs:
return (!AArch64InstrInfo::hasShiftedReg(*FirstMI));
case AArch64::SUBSXrx:
case AArch64::SUBSXrx64:
return (!AArch64InstrInfo::hasExtendedReg(*FirstMI));
case AArch64::SUBSXrr:
case AArch64::SUBSXri:
return true;
}
}
return false;
}
/// Check if the instr pair, FirstMI and SecondMI, should be fused
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
const AArch64Subtarget &ST = static_cast<const AArch64Subtarget&>(TSI);
if (ST.hasArithmeticBccFusion() && isArithmeticBccPair(FirstMI, SecondMI))
return true;
if (ST.hasArithmeticCbzFusion() && isArithmeticCbzPair(FirstMI, SecondMI))
return true;
if (ST.hasFuseAES() && isAESPair(FirstMI, SecondMI))
return true;
if (ST.hasFuseLiterals() && isLiteralsPair(FirstMI, SecondMI))
return true;
if (ST.hasFuseAddress() && isAddressLdStPair(FirstMI, SecondMI))
return true;
if (ST.hasFuseCCSelect() && isCCSelectPair(FirstMI, SecondMI))
return true;
return false;
}
} // end namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation> createAArch64MacroFusionDAGMutation () {
return createMacroFusionDAGMutation(shouldScheduleAdjacent);
}
} // end namespace llvm
|