1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
|
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// The pass tries to use the 32-bit encoding for instructions when possible.
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "si-shrink-instructions"
STATISTIC(NumInstructionsShrunk,
"Number of 64-bit instruction reduced to 32-bit.");
STATISTIC(NumLiteralConstantsFolded,
"Number of literal constants folded into 32-bit instructions.");
using namespace llvm;
namespace {
class SIShrinkInstructions : public MachineFunctionPass {
public:
static char ID;
public:
SIShrinkInstructions() : MachineFunctionPass(ID) {
}
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Shrink Instructions"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
"SI Shrink Instructions", false, false)
char SIShrinkInstructions::ID = 0;
FunctionPass *llvm::createSIShrinkInstructionsPass() {
return new SIShrinkInstructions();
}
static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
const SIRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
// Can't shrink instruction with three operands.
// FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add
// a special case for it. It can only be shrunk if the third operand
// is vcc. We should handle this the same way we handle vopc, by addding
// a register allocation hint pre-regalloc and then do the shrinking
// post-regalloc.
if (Src2) {
switch (MI.getOpcode()) {
default: return false;
case AMDGPU::V_ADDC_U32_e64:
case AMDGPU::V_SUBB_U32_e64:
case AMDGPU::V_SUBBREV_U32_e64: {
const MachineOperand *Src1
= TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (!Src1->isReg() || !TRI.isVGPR(MRI, Src1->getReg()))
return false;
// Additional verification is needed for sdst/src2.
return true;
}
case AMDGPU::V_MAC_F32_e64:
case AMDGPU::V_MAC_F16_e64:
case AMDGPU::V_FMAC_F32_e64:
if (!Src2->isReg() || !TRI.isVGPR(MRI, Src2->getReg()) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
return false;
break;
case AMDGPU::V_CNDMASK_B32_e64:
break;
}
}
const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1 && (!Src1->isReg() || !TRI.isVGPR(MRI, Src1->getReg()) ||
TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)))
return false;
// We don't need to check src0, all input types are legal, so just make sure
// src0 isn't using any modifiers.
if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
return false;
// Check output modifiers
return !TII->hasModifiersSet(MI, AMDGPU::OpName::omod) &&
!TII->hasModifiersSet(MI, AMDGPU::OpName::clamp);
}
/// This function checks \p MI for operands defined by a move immediate
/// instruction and then folds the literal constant into the instruction if it
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
MachineRegisterInfo &MRI, bool TryToCommute = true) {
assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
// Try to fold Src0
MachineOperand &Src0 = MI.getOperand(Src0Idx);
if (Src0.isReg()) {
unsigned Reg = Src0.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) {
MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
if (Def && Def->isMoveImmediate()) {
MachineOperand &MovSrc = Def->getOperand(1);
bool ConstantFolded = false;
if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
isUInt<32>(MovSrc.getImm()))) {
// It's possible to have only one component of a super-reg defined by
// a single mov, so we need to clear any subregister flag.
Src0.setSubReg(0);
Src0.ChangeToImmediate(MovSrc.getImm());
ConstantFolded = true;
} else if (MovSrc.isFI()) {
Src0.setSubReg(0);
Src0.ChangeToFrameIndex(MovSrc.getIndex());
ConstantFolded = true;
}
if (ConstantFolded) {
assert(MRI.use_empty(Reg));
Def->eraseFromParent();
++NumLiteralConstantsFolded;
return true;
}
}
}
}
// We have failed to fold src0, so commute the instruction and try again.
if (TryToCommute && MI.isCommutable()) {
if (TII->commuteInstruction(MI)) {
if (foldImmediates(MI, TII, MRI, false))
return true;
// Commute back.
TII->commuteInstruction(MI);
}
}
return false;
}
// Copy MachineOperand with all flags except setting it as implicit.
static void copyFlagsToImplicitVCC(MachineInstr &MI,
const MachineOperand &Orig) {
for (MachineOperand &Use : MI.implicit_operands()) {
if (Use.isUse() && Use.getReg() == AMDGPU::VCC) {
Use.setIsUndef(Orig.isUndef());
Use.setIsKill(Orig.isKill());
return;
}
}
}
static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
return isInt<16>(Src.getImm()) &&
!TII->isInlineConstant(*Src.getParent(),
Src.getParent()->getOperandNo(&Src));
}
static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
return isUInt<16>(Src.getImm()) &&
!TII->isInlineConstant(*Src.getParent(),
Src.getParent()->getOperandNo(&Src));
}
static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
const MachineOperand &Src,
bool &IsUnsigned) {
if (isInt<16>(Src.getImm())) {
IsUnsigned = false;
return !TII->isInlineConstant(Src);
}
if (isUInt<16>(Src.getImm())) {
IsUnsigned = true;
return !TII->isInlineConstant(Src);
}
return false;
}
/// \returns true if the constant in \p Src should be replaced with a bitreverse
/// of an inline immediate.
static bool isReverseInlineImm(const SIInstrInfo *TII,
const MachineOperand &Src,
int32_t &ReverseImm) {
if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
return false;
ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
return ReverseImm >= -16 && ReverseImm <= 64;
}
/// Copy implicit register operands from specified instruction to this
/// instruction that are not part of the instruction definition.
static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
const MachineInstr &MI) {
for (unsigned i = MI.getDesc().getNumOperands() +
MI.getDesc().getNumImplicitUses() +
MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
NewMI.addOperand(MF, MO);
}
}
static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
// cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
// get constants on the RHS.
if (!MI.getOperand(0).isReg())
TII->commuteInstruction(MI, false, 0, 1);
const MachineOperand &Src1 = MI.getOperand(1);
if (!Src1.isImm())
return;
int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
if (SOPKOpc == -1)
return;
// eq/ne is special because the imm16 can be treated as signed or unsigned,
// and initially selectd to the unsigned versions.
if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
bool HasUImm;
if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
if (!HasUImm) {
SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
}
MI.setDesc(TII->get(SOPKOpc));
}
return;
}
const MCInstrDesc &NewDesc = TII->get(SOPKOpc);
if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
(!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
MI.setDesc(NewDesc);
}
}
bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
MachineRegisterInfo &MRI = MF.getRegInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
std::vector<unsigned> I1Defs;
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
// If this has a literal constant source that is the same as the
// reversed bits of an inline immediate, replace with a bitreverse of
// that constant. This saves 4 bytes in the common case of materializing
// sign bits.
// Test if we are after regalloc. We only want to do this after any
// optimizations happen because this will confuse them.
// XXX - not exactly a check for post-regalloc run.
MachineOperand &Src = MI.getOperand(1);
if (Src.isImm() &&
TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
int32_t ReverseImm;
if (isReverseInlineImm(TII, Src, ReverseImm)) {
MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
Src.setImm(ReverseImm);
continue;
}
}
}
// Combine adjacent s_nops to use the immediate operand encoding how long
// to wait.
//
// s_nop N
// s_nop M
// =>
// s_nop (N + M)
if (MI.getOpcode() == AMDGPU::S_NOP &&
Next != MBB.end() &&
(*Next).getOpcode() == AMDGPU::S_NOP) {
MachineInstr &NextMI = *Next;
// The instruction encodes the amount to wait with an offset of 1,
// i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
// after adding.
uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;
// Make sure we don't overflow the bounds.
if (Nop0 + Nop1 <= 8) {
NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
MI.eraseFromParent();
}
continue;
}
// FIXME: We also need to consider movs of constant operands since
// immediate operands are not folded if they have more than one use, and
// the operand folding pass is unaware if the immediate will be free since
// it won't know if the src == dest constraint will end up being
// satisfied.
if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
MI.getOpcode() == AMDGPU::S_MUL_I32) {
const MachineOperand *Dest = &MI.getOperand(0);
MachineOperand *Src0 = &MI.getOperand(1);
MachineOperand *Src1 = &MI.getOperand(2);
if (!Src0->isReg() && Src1->isReg()) {
if (TII->commuteInstruction(MI, false, 1, 2))
std::swap(Src0, Src1);
}
// FIXME: This could work better if hints worked with subregisters. If
// we have a vector add of a constant, we usually don't get the correct
// allocation due to the subregister usage.
if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
Src0->isReg()) {
MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
continue;
}
if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;
MI.setDesc(TII->get(Opc));
MI.tieOperands(0, 1);
}
}
}
// Try to use s_cmpk_*
if (MI.isCompare() && TII->isSOPC(MI)) {
shrinkScalarCompare(TII, MI);
continue;
}
// Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
const MachineOperand &Dst = MI.getOperand(0);
MachineOperand &Src = MI.getOperand(1);
if (Src.isImm() &&
TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) {
int32_t ReverseImm;
if (isKImmOperand(TII, Src))
MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
else if (isReverseInlineImm(TII, Src, ReverseImm)) {
MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
Src.setImm(ReverseImm);
}
}
continue;
}
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
continue;
if (!canShrink(MI, TII, TRI, MRI)) {
// Try commuting the instruction and see if that enables us to shrink
// it.
if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
!canShrink(MI, TII, TRI, MRI))
continue;
}
// getVOPe32 could be -1 here if we started with an instruction that had
// a 32-bit encoding and then commuted it to an instruction that did not.
if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
continue;
int Op32 = AMDGPU::getVOPe32(MI.getOpcode());
if (TII->isVOPC(Op32)) {
unsigned DstReg = MI.getOperand(0).getReg();
if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
// VOPC instructions can only write to the VCC register. We can't
// force them to use VCC here, because this is only one register and
// cannot deal with sequences which would require multiple copies of
// VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
//
// So, instead of forcing the instruction to write to VCC, we provide
// a hint to the register allocator to use VCC and then we will run
// this pass again after RA and shrink it if it outputs to VCC.
MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
continue;
}
if (DstReg != AMDGPU::VCC)
continue;
}
if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
// We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
// instructions.
const MachineOperand *Src2 =
TII->getNamedOperand(MI, AMDGPU::OpName::src2);
if (!Src2->isReg())
continue;
unsigned SReg = Src2->getReg();
if (TargetRegisterInfo::isVirtualRegister(SReg)) {
MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC);
continue;
}
if (SReg != AMDGPU::VCC)
continue;
}
// Check for the bool flag output for instructions like V_ADD_I32_e64.
const MachineOperand *SDst = TII->getNamedOperand(MI,
AMDGPU::OpName::sdst);
// Check the carry-in operand for v_addc_u32_e64.
const MachineOperand *Src2 = TII->getNamedOperand(MI,
AMDGPU::OpName::src2);
if (SDst) {
if (SDst->getReg() != AMDGPU::VCC) {
if (TargetRegisterInfo::isVirtualRegister(SDst->getReg()))
MRI.setRegAllocationHint(SDst->getReg(), 0, AMDGPU::VCC);
continue;
}
// All of the instructions with carry outs also have an SGPR input in
// src2.
if (Src2 && Src2->getReg() != AMDGPU::VCC) {
if (TargetRegisterInfo::isVirtualRegister(Src2->getReg()))
MRI.setRegAllocationHint(Src2->getReg(), 0, AMDGPU::VCC);
continue;
}
}
// We can shrink this instruction
LLVM_DEBUG(dbgs() << "Shrinking " << MI);
MachineInstrBuilder Inst32 =
BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));
// Add the dst operand if the 32-bit encoding also has an explicit $vdst.
// For VOPC instructions, this is replaced by an implicit def of vcc.
int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst);
if (Op32DstIdx != -1) {
// dst
Inst32.add(MI.getOperand(0));
} else {
assert(MI.getOperand(0).getReg() == AMDGPU::VCC &&
"Unexpected case");
}
Inst32.add(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));
const MachineOperand *Src1 =
TII->getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1)
Inst32.add(*Src1);
if (Src2) {
int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
if (Op32Src2Idx != -1) {
Inst32.add(*Src2);
} else {
// In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
// replaced with an implicit read of vcc. This was already added
// during the initial BuildMI, so find it to preserve the flags.
copyFlagsToImplicitVCC(*Inst32, *Src2);
}
}
++NumInstructionsShrunk;
// Copy extra operands not present in the instruction definition.
copyExtraImplicitOps(*Inst32, MF, MI);
MI.eraseFromParent();
foldImmediates(*Inst32, TII, MRI);
LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
}
}
return false;
}
|