1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
|
//===-- RISCVAsmParser.cpp - Parse RISCV assembly to MCInst instructions --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "MCTargetDesc/RISCVMCExpr.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "MCTargetDesc/RISCVTargetStreamer.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include <limits>
using namespace llvm;
// Include the auto-generated portion of the compress emitter.
#define GEN_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
namespace {
struct RISCVOperand;
class RISCVAsmParser : public MCTargetAsmParser {
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool isRV64() const { return getSTI().hasFeature(RISCV::Feature64Bit); }
RISCVTargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<RISCVTargetStreamer &>(TS);
}
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
bool generateImmOutOfRangeError(OperandVector &Operands, uint64_t ErrorInfo,
int64_t Lower, int64_t Upper, Twine Msg);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseDirective(AsmToken DirectiveID) override;
// Helper to actually emit an instruction to the MCStreamer. Also, when
// possible, compression of the instruction is performed.
void emitToStreamer(MCStreamer &S, const MCInst &Inst);
// Helper to emit a combination of LUI, ADDI(W), and SLLI instructions that
// synthesize the desired immedate value into the destination register.
void emitLoadImm(unsigned DestReg, int64_t Value, MCStreamer &Out);
/// Helper for processing MC instructions that have been successfully matched
/// by MatchAndEmitInstruction. Modifications to the emitted instructions,
/// like the expansion of pseudo instructions (e.g., "li"), can be performed
/// in this method.
bool processInstruction(MCInst &Inst, SMLoc IDLoc, MCStreamer &Out);
// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "RISCVGenAsmMatcher.inc"
OperandMatchResultTy parseImmediate(OperandVector &Operands);
OperandMatchResultTy parseRegister(OperandVector &Operands,
bool AllowParens = false);
OperandMatchResultTy parseMemOpBaseReg(OperandVector &Operands);
OperandMatchResultTy parseOperandWithModifier(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, bool ForceImmediate);
bool parseDirectiveOption();
void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (!(getSTI().getFeatureBits()[Feature])) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
if (getSTI().getFeatureBits()[Feature]) {
MCSubtargetInfo &STI = copySTI();
setAvailableFeatures(
ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
}
}
public:
enum RISCVMatchResultTy {
Match_Dummy = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "RISCVGenAsmMatcher.inc"
#undef GET_OPERAND_DIAGNOSTIC_TYPES
};
static bool classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind,
int64_t &Addend);
RISCVAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
Parser.addAliasForDirective(".half", ".2byte");
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".dword", ".8byte");
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
};
/// RISCVOperand - Instances of this class represent a parsed machine
/// instruction
struct RISCVOperand : public MCParsedAsmOperand {
enum KindTy {
Token,
Register,
Immediate,
} Kind;
bool IsRV64;
struct RegOp {
unsigned RegNum;
};
struct ImmOp {
const MCExpr *Val;
};
SMLoc StartLoc, EndLoc;
union {
StringRef Tok;
RegOp Reg;
ImmOp Imm;
};
RISCVOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
public:
RISCVOperand(const RISCVOperand &o) : MCParsedAsmOperand() {
Kind = o.Kind;
IsRV64 = o.IsRV64;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case Register:
Reg = o.Reg;
break;
case Immediate:
Imm = o.Imm;
break;
case Token:
Tok = o.Tok;
break;
}
}
bool isToken() const override { return Kind == Token; }
bool isReg() const override { return Kind == Register; }
bool isImm() const override { return Kind == Immediate; }
bool isMem() const override { return false; }
bool evaluateConstantImm(int64_t &Imm, RISCVMCExpr::VariantKind &VK) const {
const MCExpr *Val = getImm();
bool Ret = false;
if (auto *RE = dyn_cast<RISCVMCExpr>(Val)) {
Ret = RE->evaluateAsConstant(Imm);
VK = RE->getKind();
} else if (auto CE = dyn_cast<MCConstantExpr>(Val)) {
Ret = true;
VK = RISCVMCExpr::VK_RISCV_None;
Imm = CE->getValue();
}
return Ret;
}
// True if operand is a symbol with no modifiers, or a constant with no
// modifiers and isShiftedInt<N-1, 1>(Op).
template <int N> bool isBareSimmNLsb0() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
bool IsValid;
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isShiftedInt<N - 1, 1>(Imm);
return IsValid && VK == RISCVMCExpr::VK_RISCV_None;
}
// Predicate methods for AsmOperands defined in RISCVInstrInfo.td
bool isBareSymbol() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
// Must be of 'immediate' type but not a constant.
if (!isImm() || evaluateConstantImm(Imm, VK))
return false;
return RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
/// Return true if the operand is a valid for the fence instruction e.g.
/// ('iorw').
bool isFenceArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
// Letters must be unique, taken from 'iorw', and in ascending order. This
// holds as long as each individual character is one of 'iorw' and is
// greater than the previous character.
char Prev = '\0';
for (char c : Str) {
if (c != 'i' && c != 'o' && c != 'r' && c != 'w')
return false;
if (c <= Prev)
return false;
Prev = c;
}
return true;
}
/// Return true if the operand is a valid floating point rounding mode.
bool isFRMArg() const {
if (!isImm())
return false;
const MCExpr *Val = getImm();
auto *SVal = dyn_cast<MCSymbolRefExpr>(Val);
if (!SVal || SVal->getKind() != MCSymbolRefExpr::VK_None)
return false;
StringRef Str = SVal->getSymbol().getName();
return RISCVFPRndMode::stringToRoundingMode(Str) != RISCVFPRndMode::Invalid;
}
bool isImmXLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
// Given only Imm, ensuring that the actually specified constant is either
// a signed or unsigned 64-bit number is unfortunately impossible.
bool IsInRange = isRV64() ? true : isInt<32>(Imm) || isUInt<32>(Imm);
return IsConstantImm && IsInRange && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImmLog2XLen() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
if (!evaluateConstantImm(Imm, VK) || VK != RISCVMCExpr::VK_RISCV_None)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImmLog2XLenNonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
if (!evaluateConstantImm(Imm, VK) || VK != RISCVMCExpr::VK_RISCV_None)
return false;
if (Imm == 0)
return false;
return (isRV64() && isUInt<6>(Imm)) || isUInt<5>(Imm);
}
bool isUImm5() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm5NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isUInt<5>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm6() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isInt<6>(Imm);
return IsValid &&
(VK == RISCVMCExpr::VK_RISCV_None || VK == RISCVMCExpr::VK_RISCV_LO);
}
bool isSImm6NonZero() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = ((Imm != 0) && isInt<6>(Imm));
return IsValid &&
(VK == RISCVMCExpr::VK_RISCV_None || VK == RISCVMCExpr::VK_RISCV_LO);
}
bool isCLUIImm() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && (Imm != 0) &&
(isUInt<5>(Imm) || (Imm >= 0xfffe0 && Imm <= 0xfffff)) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm7Lsb00() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<5, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb00() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<6, 2>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm8Lsb000() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<5, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm9Lsb0() const { return isBareSimmNLsb0<9>(); }
bool isUImm9Lsb000() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<6, 3>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm10Lsb00NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isShiftedUInt<8, 2>(Imm) && (Imm != 0) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm12() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isInt<12>(Imm);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_LO ||
VK == RISCVMCExpr::VK_RISCV_PCREL_LO);
}
bool isSImm12Lsb0() const { return isBareSimmNLsb0<12>(); }
bool isUImm12() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && isUInt<12>(Imm) && VK == RISCVMCExpr::VK_RISCV_None;
}
bool isSImm13Lsb0() const { return isBareSimmNLsb0<13>(); }
bool isSImm10Lsb0000NonZero() const {
int64_t Imm;
RISCVMCExpr::VariantKind VK;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
return IsConstantImm && (Imm != 0) && isShiftedInt<6, 4>(Imm) &&
VK == RISCVMCExpr::VK_RISCV_None;
}
bool isUImm20() const {
RISCVMCExpr::VariantKind VK;
int64_t Imm;
bool IsValid;
if (!isImm())
return false;
bool IsConstantImm = evaluateConstantImm(Imm, VK);
if (!IsConstantImm)
IsValid = RISCVAsmParser::classifySymbolRef(getImm(), VK, Imm);
else
IsValid = isUInt<20>(Imm);
return IsValid && (VK == RISCVMCExpr::VK_RISCV_None ||
VK == RISCVMCExpr::VK_RISCV_HI ||
VK == RISCVMCExpr::VK_RISCV_PCREL_HI);
}
bool isSImm21Lsb0() const { return isBareSimmNLsb0<21>(); }
/// getStartLoc - Gets location of the first token of this operand
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Gets location of the last token of this operand
SMLoc getEndLoc() const override { return EndLoc; }
/// True if this operand is for an RV64 instruction
bool isRV64() const { return IsRV64; }
unsigned getReg() const override {
assert(Kind == Register && "Invalid type access!");
return Reg.RegNum;
}
const MCExpr *getImm() const {
assert(Kind == Immediate && "Invalid type access!");
return Imm.Val;
}
StringRef getToken() const {
assert(Kind == Token && "Invalid type access!");
return Tok;
}
void print(raw_ostream &OS) const override {
switch (Kind) {
case Immediate:
OS << *getImm();
break;
case Register:
OS << "<register x";
OS << getReg() << ">";
break;
case Token:
OS << "'" << getToken() << "'";
break;
}
}
static std::unique_ptr<RISCVOperand> createToken(StringRef Str, SMLoc S,
bool IsRV64) {
auto Op = make_unique<RISCVOperand>(Token);
Op->Tok = Str;
Op->StartLoc = S;
Op->EndLoc = S;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createReg(unsigned RegNo, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = make_unique<RISCVOperand>(Register);
Op->Reg.RegNum = RegNo;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
static std::unique_ptr<RISCVOperand> createImm(const MCExpr *Val, SMLoc S,
SMLoc E, bool IsRV64) {
auto Op = make_unique<RISCVOperand>(Immediate);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
Op->IsRV64 = IsRV64;
return Op;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
assert(Expr && "Expr shouldn't be null!");
int64_t Imm = 0;
bool IsConstant = false;
if (auto *RE = dyn_cast<RISCVMCExpr>(Expr)) {
IsConstant = RE->evaluateAsConstant(Imm);
} else if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
IsConstant = true;
Imm = CE->getValue();
}
if (IsConstant)
Inst.addOperand(MCOperand::createImm(Imm));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
// Used by the TableGen Code
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
addExpr(Inst, getImm());
}
void addFenceArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// isFenceArg has validated the operand, meaning this cast is safe
auto SE = cast<MCSymbolRefExpr>(getImm());
unsigned Imm = 0;
for (char c : SE->getSymbol().getName()) {
switch (c) {
default: llvm_unreachable("FenceArg must contain only [iorw]");
case 'i': Imm |= RISCVFenceField::I; break;
case 'o': Imm |= RISCVFenceField::O; break;
case 'r': Imm |= RISCVFenceField::R; break;
case 'w': Imm |= RISCVFenceField::W; break;
}
}
Inst.addOperand(MCOperand::createImm(Imm));
}
// Returns the rounding mode represented by this RISCVOperand. Should only
// be called after checking isFRMArg.
RISCVFPRndMode::RoundingMode getRoundingMode() const {
// isFRMArg has validated the operand, meaning this cast is safe.
auto SE = cast<MCSymbolRefExpr>(getImm());
RISCVFPRndMode::RoundingMode FRM =
RISCVFPRndMode::stringToRoundingMode(SE->getSymbol().getName());
assert(FRM != RISCVFPRndMode::Invalid && "Invalid rounding mode");
return FRM;
}
void addFRMArgOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getRoundingMode()));
}
};
} // end anonymous namespace.
#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "RISCVGenAsmMatcher.inc"
// Return the matching FPR64 register for the given FPR32.
// FIXME: Ideally this function could be removed in favour of using
// information from TableGen.
unsigned convertFPR32ToFPR64(unsigned Reg) {
switch (Reg) {
default:
llvm_unreachable("Not a recognised FPR32 register");
case RISCV::F0_32: return RISCV::F0_64;
case RISCV::F1_32: return RISCV::F1_64;
case RISCV::F2_32: return RISCV::F2_64;
case RISCV::F3_32: return RISCV::F3_64;
case RISCV::F4_32: return RISCV::F4_64;
case RISCV::F5_32: return RISCV::F5_64;
case RISCV::F6_32: return RISCV::F6_64;
case RISCV::F7_32: return RISCV::F7_64;
case RISCV::F8_32: return RISCV::F8_64;
case RISCV::F9_32: return RISCV::F9_64;
case RISCV::F10_32: return RISCV::F10_64;
case RISCV::F11_32: return RISCV::F11_64;
case RISCV::F12_32: return RISCV::F12_64;
case RISCV::F13_32: return RISCV::F13_64;
case RISCV::F14_32: return RISCV::F14_64;
case RISCV::F15_32: return RISCV::F15_64;
case RISCV::F16_32: return RISCV::F16_64;
case RISCV::F17_32: return RISCV::F17_64;
case RISCV::F18_32: return RISCV::F18_64;
case RISCV::F19_32: return RISCV::F19_64;
case RISCV::F20_32: return RISCV::F20_64;
case RISCV::F21_32: return RISCV::F21_64;
case RISCV::F22_32: return RISCV::F22_64;
case RISCV::F23_32: return RISCV::F23_64;
case RISCV::F24_32: return RISCV::F24_64;
case RISCV::F25_32: return RISCV::F25_64;
case RISCV::F26_32: return RISCV::F26_64;
case RISCV::F27_32: return RISCV::F27_64;
case RISCV::F28_32: return RISCV::F28_64;
case RISCV::F29_32: return RISCV::F29_64;
case RISCV::F30_32: return RISCV::F30_64;
case RISCV::F31_32: return RISCV::F31_64;
}
}
unsigned RISCVAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
RISCVOperand &Op = static_cast<RISCVOperand &>(AsmOp);
if (!Op.isReg())
return Match_InvalidOperand;
unsigned Reg = Op.getReg();
bool IsRegFPR32 =
RISCVMCRegisterClasses[RISCV::FPR32RegClassID].contains(Reg);
bool IsRegFPR32C =
RISCVMCRegisterClasses[RISCV::FPR32CRegClassID].contains(Reg);
// As the parser couldn't differentiate an FPR32 from an FPR64, coerce the
// register from FPR32 to FPR64 or FPR32C to FPR64C if necessary.
if ((IsRegFPR32 && Kind == MCK_FPR64) ||
(IsRegFPR32C && Kind == MCK_FPR64C)) {
Op.Reg.RegNum = convertFPR32ToFPR64(Reg);
return Match_Success;
}
return Match_InvalidOperand;
}
bool RISCVAsmParser::generateImmOutOfRangeError(
OperandVector &Operands, uint64_t ErrorInfo, int64_t Lower, int64_t Upper,
Twine Msg = "immediate must be an integer in the range") {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, Msg + " [" + Twine(Lower) + ", " + Twine(Upper) + "]");
}
bool RISCVAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
default:
break;
case Match_Success:
return processInstruction(Inst, IDLoc, Out);
case Match_MissingFeature:
return Error(IDLoc, "instruction use requires an option to be enabled");
case Match_MnemonicFail:
return Error(IDLoc, "unrecognized instruction mnemonic");
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(ErrorLoc, "too few operands for instruction");
ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_InvalidImmXLen:
if (isRV64()) {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a constant 64-bit integer");
}
return generateImmOutOfRangeError(Operands, ErrorInfo,
std::numeric_limits<int32_t>::min(),
std::numeric_limits<uint32_t>::max());
case Match_InvalidUImmLog2XLen:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidUImmLog2XLenNonZero:
if (isRV64())
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 6) - 1);
return generateImmOutOfRangeError(Operands, ErrorInfo, 1, (1 << 5) - 1);
case Match_InvalidUImm5:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 5) - 1);
case Match_InvalidSImm6:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1);
case Match_InvalidSImm6NonZero:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 5),
(1 << 5) - 1,
"immediate must be non-zero in the range");
case Match_InvalidCLUIImm:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 1, (1 << 5) - 1,
"immediate must be in [0xfffe0, 0xfffff] or");
case Match_InvalidUImm7Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 7) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb00:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidUImm8Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 8) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidSImm9Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 8), (1 << 8) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm9Lsb000:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 0, (1 << 9) - 8,
"immediate must be a multiple of 8 bytes in the range");
case Match_InvalidUImm10Lsb00NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, 4, (1 << 10) - 4,
"immediate must be a multiple of 4 bytes in the range");
case Match_InvalidSImm10Lsb0000NonZero:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 9), (1 << 9) - 16,
"immediate must be a multiple of 16 bytes and non-zero in the range");
case Match_InvalidSImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, -(1 << 11),
(1 << 11) - 1);
case Match_InvalidSImm12Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 11), (1 << 11) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm12:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 12) - 1);
case Match_InvalidSImm13Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 12), (1 << 12) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidUImm20:
return generateImmOutOfRangeError(Operands, ErrorInfo, 0, (1 << 20) - 1);
case Match_InvalidSImm21Lsb0:
return generateImmOutOfRangeError(
Operands, ErrorInfo, -(1 << 20), (1 << 20) - 2,
"immediate must be a multiple of 2 bytes in the range");
case Match_InvalidFenceArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be formed of letters selected in-order from 'iorw'");
}
case Match_InvalidFRMArg: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(
ErrorLoc,
"operand must be a valid floating point rounding mode mnemonic");
}
case Match_InvalidBareSymbol: {
SMLoc ErrorLoc = ((RISCVOperand &)*Operands[ErrorInfo]).getStartLoc();
return Error(ErrorLoc, "operand must be a bare symbol name");
}
}
llvm_unreachable("Unknown match type detected!");
}
bool RISCVAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
const AsmToken &Tok = getParser().getTok();
StartLoc = Tok.getLoc();
EndLoc = Tok.getEndLoc();
RegNo = 0;
StringRef Name = getLexer().getTok().getIdentifier();
if (!MatchRegisterName(Name) || !MatchRegisterAltName(Name)) {
getParser().Lex(); // Eat identifier token.
return false;
}
return Error(StartLoc, "invalid register name");
}
OperandMatchResultTy RISCVAsmParser::parseRegister(OperandVector &Operands,
bool AllowParens) {
SMLoc FirstS = getLoc();
bool HadParens = false;
AsmToken Buf[2];
// If this a parenthesised register name is allowed, parse it atomically
if (AllowParens && getLexer().is(AsmToken::LParen)) {
size_t ReadCount = getLexer().peekTokens(Buf);
if (ReadCount == 2 && Buf[1].getKind() == AsmToken::RParen) {
HadParens = true;
getParser().Lex(); // Eat '('
}
}
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::Identifier:
StringRef Name = getLexer().getTok().getIdentifier();
unsigned RegNo = MatchRegisterName(Name);
if (RegNo == 0) {
RegNo = MatchRegisterAltName(Name);
if (RegNo == 0) {
if (HadParens)
getLexer().UnLex(Buf[0]);
return MatchOperand_NoMatch;
}
}
if (HadParens)
Operands.push_back(RISCVOperand::createToken("(", FirstS, isRV64()));
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
getLexer().Lex();
Operands.push_back(RISCVOperand::createReg(RegNo, S, E, isRV64()));
}
if (HadParens) {
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
}
return MatchOperand_Success;
}
OperandMatchResultTy RISCVAsmParser::parseImmediate(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
const MCExpr *Res;
switch (getLexer().getKind()) {
default:
return MatchOperand_NoMatch;
case AsmToken::LParen:
case AsmToken::Minus:
case AsmToken::Plus:
case AsmToken::Integer:
case AsmToken::String:
if (getParser().parseExpression(Res))
return MatchOperand_ParseFail;
break;
case AsmToken::Identifier: {
StringRef Identifier;
if (getParser().parseIdentifier(Identifier))
return MatchOperand_ParseFail;
MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
break;
}
case AsmToken::Percent:
return parseOperandWithModifier(Operands);
}
Operands.push_back(RISCVOperand::createImm(Res, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseOperandWithModifier(OperandVector &Operands) {
SMLoc S = getLoc();
SMLoc E = SMLoc::getFromPointer(S.getPointer() - 1);
if (getLexer().getKind() != AsmToken::Percent) {
Error(getLoc(), "expected '%' for operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '%'
if (getLexer().getKind() != AsmToken::Identifier) {
Error(getLoc(), "expected valid identifier for operand modifier");
return MatchOperand_ParseFail;
}
StringRef Identifier = getParser().getTok().getIdentifier();
RISCVMCExpr::VariantKind VK = RISCVMCExpr::getVariantKindForName(Identifier);
if (VK == RISCVMCExpr::VK_RISCV_Invalid) {
Error(getLoc(), "unrecognized operand modifier");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat the identifier
if (getLexer().getKind() != AsmToken::LParen) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
const MCExpr *SubExpr;
if (getParser().parseParenExpression(SubExpr, E)) {
return MatchOperand_ParseFail;
}
const MCExpr *ModExpr = RISCVMCExpr::create(SubExpr, VK, getContext());
Operands.push_back(RISCVOperand::createImm(ModExpr, S, E, isRV64()));
return MatchOperand_Success;
}
OperandMatchResultTy
RISCVAsmParser::parseMemOpBaseReg(OperandVector &Operands) {
if (getLexer().isNot(AsmToken::LParen)) {
Error(getLoc(), "expected '('");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat '('
Operands.push_back(RISCVOperand::createToken("(", getLoc(), isRV64()));
if (parseRegister(Operands) != MatchOperand_Success) {
Error(getLoc(), "expected register");
return MatchOperand_ParseFail;
}
if (getLexer().isNot(AsmToken::RParen)) {
Error(getLoc(), "expected ')'");
return MatchOperand_ParseFail;
}
getParser().Lex(); // Eat ')'
Operands.push_back(RISCVOperand::createToken(")", getLoc(), isRV64()));
return MatchOperand_Success;
}
/// Looks at a token type and creates the relevant operand from this
/// information, adding to Operands. If operand was parsed, returns false, else
/// true. If ForceImmediate is true, no attempt will be made to parse the
/// operand as a register, which is needed for pseudoinstructions such as
/// call.
bool RISCVAsmParser::parseOperand(OperandVector &Operands,
bool ForceImmediate) {
// Attempt to parse token as register, unless ForceImmediate.
if (!ForceImmediate && parseRegister(Operands, true) == MatchOperand_Success)
return false;
// Attempt to parse token as an immediate
if (parseImmediate(Operands) == MatchOperand_Success) {
// Parse memory base register if present
if (getLexer().is(AsmToken::LParen))
return parseMemOpBaseReg(Operands) != MatchOperand_Success;
return false;
}
// Finally we have exhausted all options and must declare defeat.
Error(getLoc(), "unknown operand");
return true;
}
bool RISCVAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// First operand is token for instruction
Operands.push_back(RISCVOperand::createToken(Name, NameLoc, isRV64()));
// If there are no more operands, then finish
if (getLexer().is(AsmToken::EndOfStatement))
return false;
// Parse first operand
bool ForceImmediate = (Name == "call" || Name == "tail");
if (parseOperand(Operands, ForceImmediate))
return true;
// Parse until end of statement, consuming commas between operands
while (getLexer().is(AsmToken::Comma)) {
// Consume comma token
getLexer().Lex();
// Parse next operand
if (parseOperand(Operands, false))
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
getParser().eatToEndOfStatement();
return Error(Loc, "unexpected token");
}
getParser().Lex(); // Consume the EndOfStatement.
return false;
}
bool RISCVAsmParser::classifySymbolRef(const MCExpr *Expr,
RISCVMCExpr::VariantKind &Kind,
int64_t &Addend) {
Kind = RISCVMCExpr::VK_RISCV_None;
Addend = 0;
if (const RISCVMCExpr *RE = dyn_cast<RISCVMCExpr>(Expr)) {
Kind = RE->getKind();
Expr = RE->getSubExpr();
}
// It's a simple symbol reference or constant with no addend.
if (isa<MCConstantExpr>(Expr) || isa<MCSymbolRefExpr>(Expr))
return true;
const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr);
if (!BE)
return false;
if (!isa<MCSymbolRefExpr>(BE->getLHS()))
return false;
if (BE->getOpcode() != MCBinaryExpr::Add &&
BE->getOpcode() != MCBinaryExpr::Sub)
return false;
// We are able to support the subtraction of two symbol references
if (BE->getOpcode() == MCBinaryExpr::Sub &&
isa<MCSymbolRefExpr>(BE->getRHS()))
return true;
// See if the addend is a constant, otherwise there's more going
// on here than we can deal with.
auto AddendExpr = dyn_cast<MCConstantExpr>(BE->getRHS());
if (!AddendExpr)
return false;
Addend = AddendExpr->getValue();
if (BE->getOpcode() == MCBinaryExpr::Sub)
Addend = -Addend;
// It's some symbol reference + a constant addend
return Kind != RISCVMCExpr::VK_RISCV_Invalid;
}
bool RISCVAsmParser::ParseDirective(AsmToken DirectiveID) {
// This returns false if this function recognizes the directive
// regardless of whether it is successfully handles or reports an
// error. Otherwise it returns true to give the generic parser a
// chance at recognizing it.
StringRef IDVal = DirectiveID.getString();
if (IDVal == ".option")
return parseDirectiveOption();
return true;
}
bool RISCVAsmParser::parseDirectiveOption() {
MCAsmParser &Parser = getParser();
// Get the option token.
AsmToken Tok = Parser.getTok();
// At the moment only identifiers are supported.
if (Tok.isNot(AsmToken::Identifier))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected identifier");
StringRef Option = Tok.getIdentifier();
if (Option == "rvc") {
getTargetStreamer().emitDirectiveOptionRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
setFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
if (Option == "norvc") {
getTargetStreamer().emitDirectiveOptionNoRVC();
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::EndOfStatement))
return Error(Parser.getTok().getLoc(),
"unexpected token, expected end of statement");
clearFeatureBits(RISCV::FeatureStdExtC, "c");
return false;
}
// Unknown option.
Warning(Parser.getTok().getLoc(),
"unknown option, expected 'rvc' or 'norvc'");
Parser.eatToEndOfStatement();
return false;
}
void RISCVAsmParser::emitToStreamer(MCStreamer &S, const MCInst &Inst) {
MCInst CInst;
bool Res = compressInst(CInst, Inst, getSTI(), S.getContext());
CInst.setLoc(Inst.getLoc());
S.EmitInstruction((Res ? CInst : Inst), getSTI());
}
void RISCVAsmParser::emitLoadImm(unsigned DestReg, int64_t Value,
MCStreamer &Out) {
if (isInt<32>(Value)) {
// Emits the MC instructions for loading a 32-bit constant into a register.
//
// Depending on the active bits in the immediate Value v, the following
// instruction sequences are emitted:
//
// v == 0 : ADDI(W)
// v[0,12) != 0 && v[12,32) == 0 : ADDI(W)
// v[0,12) == 0 && v[12,32) != 0 : LUI
// v[0,32) != 0 : LUI+ADDI(W)
//
int64_t Hi20 = ((Value + 0x800) >> 12) & 0xFFFFF;
int64_t Lo12 = SignExtend64<12>(Value);
unsigned SrcReg = RISCV::X0;
if (Hi20) {
emitToStreamer(Out,
MCInstBuilder(RISCV::LUI).addReg(DestReg).addImm(Hi20));
SrcReg = DestReg;
}
if (Lo12 || Hi20 == 0) {
unsigned AddiOpcode =
STI->hasFeature(RISCV::Feature64Bit) ? RISCV::ADDIW : RISCV::ADDI;
emitToStreamer(Out, MCInstBuilder(AddiOpcode)
.addReg(DestReg)
.addReg(SrcReg)
.addImm(Lo12));
}
return;
}
assert(STI->hasFeature(RISCV::Feature64Bit) &&
"Target must be 64-bit to support a >32-bit constant");
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emmitted. Note
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
// while the following ADDI instructions contribute up to 12 bits each.
//
// On the first glance, implementing this seems to be possible by simply
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
// fact that ADDI performs a sign extended addition, doing it like that would
// only be possible when at most 11 bits of the ADDI instructions are used.
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
// requires that the constant is processed starting with the least significant
// bit.
//
// In the following, constants are processed from LSB to MSB but instruction
// emission is performed from MSB to LSB by recursively calling
// emitLoadImm. In each recursion, first the lowest 12 bits are removed
// from the constant and the optimal shift amount, which can be greater than
// 12 bits if the constant is sparse, is determined. Then, the shifted
// remaining constant is processed recursively and gets emitted as soon as it
// fits into 32 bits. The emission of the shifts and additions is subsequently
// performed when the recursion returns.
//
int64_t Lo12 = SignExtend64<12>(Value);
int64_t Hi52 = (Value + 0x800) >> 12;
int ShiftAmount = 12 + findFirstSet((uint64_t)Hi52);
Hi52 = SignExtend64(Hi52 >> (ShiftAmount - 12), 64 - ShiftAmount);
emitLoadImm(DestReg, Hi52, Out);
emitToStreamer(Out, MCInstBuilder(RISCV::SLLI)
.addReg(DestReg)
.addReg(DestReg)
.addImm(ShiftAmount));
if (Lo12)
emitToStreamer(Out, MCInstBuilder(RISCV::ADDI)
.addReg(DestReg)
.addReg(DestReg)
.addImm(Lo12));
}
bool RISCVAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
MCStreamer &Out) {
Inst.setLoc(IDLoc);
if (Inst.getOpcode() == RISCV::PseudoLI) {
auto Reg = Inst.getOperand(0).getReg();
int64_t Imm = Inst.getOperand(1).getImm();
// On RV32 the immediate here can either be a signed or an unsigned
// 32-bit number. Sign extension has to be performed to ensure that Imm
// represents the expected signed 64-bit number.
if (!isRV64())
Imm = SignExtend64<32>(Imm);
emitLoadImm(Reg, Imm, Out);
return false;
}
emitToStreamer(Out, Inst);
return false;
}
extern "C" void LLVMInitializeRISCVAsmParser() {
RegisterMCAsmParser<RISCVAsmParser> X(getTheRISCV32Target());
RegisterMCAsmParser<RISCVAsmParser> Y(getTheRISCV64Target());
}
|